Spark 3.0 集群搭建教程

先决条件

在部署Spark之前,请确认集群的每个节点都符合以下条件:

  1. 已安装Java 1.8.x或以上版本(推荐1.8版本)
  2. 节点两两之间可以SSH免密码登录
  3. 已部署Hadoop(如果只是部署Standalone Cluster则不需要Hadoop)

如果你已经按照Hadoop集群搭建教程成功建立了Hadoop集群,那么以上条件均已满足。

下载Spark二进制文件

在Spark的下载页面中有多个版本可以选择,因为之前选择了Hadoop 2.7.7版本,所以这里选择与之对应的 Pre-built with user-provided Apache Hadoop版本,Scala版本选择最新的2.12。

1
2
3
cd /opt
wget wget https://mirrors.tuna.tsinghua.edu.cn/apache/spark/spark-3.0.0/spark-3.0.0-bin-without-hadoop.tgz
tar -xzvf spark-3.0.0-bin-without-hadoop.tgz

配置Spark环境变量

1
2
3
# Spark environment
export SPARK_HOME=/opt/spark-3.0.0-bin-without-hadoop
export PATH=$PATH:${SPARK_HOME}/bin

spark-env.sh

因为我们下载的是不带hadoop依赖jar的spark版本,所以需要在spark中指定hadoop的classpath

1
2
3
4
5
6
7
8
9
10
11
配置文件spark-env.sh:
### in conf/spark-env.sh ###

# If 'hadoop' binary is on your PATH
export SPARK_DIST_CLASSPATH=$(hadoop classpath)

# With explicit path to 'hadoop' binary
export SPARK_DIST_CLASSPATH=$(/path/to/hadoop/bin/hadoop classpath)

# Passing a Hadoop configuration directory
export SPARK_DIST_CLASSPATH=$(hadoop --config /path/to/configs classpath)

这里在最后一行添加:

1
2
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export SPARK_DIST_CLASSPATH=$(/opt/hadoop-2.7.7/bin/hadoop classpath)

slaves

向slaves文件写入slave节点的host/IP地址

1
2
huawei-02
huawei-03

将配置好的Spark分发到其它节点

1
2
scp -r /opt/spark-3.0.0-bin-without-hadoop huawei-02:/opt/spark-3.0.0-bin-without-hadoop
scp -r /opt/spark-3.0.0-bin-without-hadoop huawei-03:/opt/spark-3.0.0-bin-without-hadoop

启动Spark

1
./opt/spark-3.0.0=bin-without-hadoop/sbin/start-all.sh

打开浏览器,输入[主机]:8080 出现下面节点则表示启动成功了。

spark cluster

关于:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable问题的解决。

其实该问题不影响使用。就是没有加载到linux共享库,打开/etc/rpfile

1
2
vi /etc/profile
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native/:$LD_LIBRARY_PATH

source一下就解决了。

查看sbin目录,可以看到spark提供了几种启动方式.

Spark 的三种启动方式

Spark最主要资源管理方式按排名为Hadoop Yarn, Apache Standalone 和Mesos。在单机使用时,Spark还可以采用最基本的local模式。

目前Apache Spark支持三种分布式部署方式,分别是standalone、spark on mesos和 spark on YARN,其中,第一种类似于MapReduce 1.0所采用的模式,内部实现了容错性和资源管理,后两种则是未来发展的趋势,部分容错性和资源管理交由统一的资源管理系统完成:让Spark运行在一个通用的资源管理系统之上,这样可以与其他计算框架,比如MapReduce,公用一个集群资源,最大的好处是降低运维成本和提高资源利用率(资源按需分配)。本文将介绍这三种部署方式,并比较其优缺点。

  1. Standalone模式

即独立模式,自带完整的服务,可单独部署到一个集群中,无需依赖任何其他资源管理系统。从一定程度上说,该模式是其他两种的基础。借鉴Spark开发模式,我们可以得到一种开发新型计算框架的一般思路:先设计出它的standalone模式,为了快速开发,起初不需要考虑服务(比如master/slave)的容错性,之后再开发相应的wrapper,将stanlone模式下的服务原封不动的部署到资源管理系统yarn或者mesos上,由资源管理系统负责服务本身的容错。目前Spark在standalone模式下是没有任何单点故障问题的,这是借助zookeeper实现的,思想类似于Hbase master单点故障解决方案。将Spark standalone与MapReduce比较,会发现它们两个在架构上是完全一致的:

  1. 都是由master/slaves服务组成的,且起初master均存在单点故障,后来均通过zookeeper解决(Apache MRv1的JobTracker仍存在单点问题,但CDH版本得到了解决);
  2. 各个节点上的资源被抽象成粗粒度的slot,有多少slot就能同时运行多少task。不同的是,MapReduce将slot分为map slot和reduce slot,它们分别只能供Map Task和Reduce Task使用,而不能共享,这是MapReduce资源利率低效的原因之一,而Spark则更优化一些,它不区分slot类型,只有一种slot,可以供各种类型的Task使用,这种方式可以提高资源利用率,但是不够灵活,不能为不同类型的Task定制slot资源。总之,这两种方式各有优缺点。
  1. Spark On Mesos模式

这是很多公司采用的模式,官方推荐这种模式(当然,原因之一是血缘关系)。正是由于Spark开发之初就考虑到支持Mesos,因此,目前而言,Spark运行在Mesos上会比运行在YARN上更加灵活,更加自然。目前在Spark On Mesos环境中,用户可选择两种调度模式之一运行自己的应用程序(可参考Andrew Xia的“Mesos Scheduling Mode on Spark”):

  1. 粗粒度模式(Coarse-grained Mode):每个应用程序的运行环境由一个Dirver和若干个Executor组成,其中,每个Executor占用若干资源,内部可运行多个Task(对应多少个“slot”)。应用程序的各个任务正式运行之前,需要将运行环境中的资源全部申请好,且运行过程中要一直占用这些资源,即使不用,最后程序运行结束后,回收这些资源。举个例子,比如你提交应用程序时,指定使用5个executor运行你的应用程序,每个executor占用5GB内存和5个CPU,每个executor内部设置了5个slot,则Mesos需要先为executor分配资源并启动它们,之后开始调度任务。另外,在程序运行过程中,mesos的master和slave并不知道executor内部各个task的运行情况,executor直接将任务状态通过内部的通信机制汇报给Driver,从一定程度上可以认为,每个应用程序利用mesos搭建了一个虚拟集群自己使用。

  2. 细粒度模式(Fine-grained Mode):鉴于粗粒度模式会造成大量资源浪费,Spark On Mesos还提供了另外一种调度模式:细粒度模式,这种模式类似于现在的云计算,思想是按需分配。与粗粒度模式一样,应用程序启动时,先会启动executor,但每个executor占用资源仅仅是自己运行所需的资源,不需要考虑将来要运行的任务,之后,mesos会为每个executor动态分配资源,每分配一些,便可以运行一个新任务,单个Task运行完之后可以马上释放对应的资源。每个Task会汇报状态给Mesos slave和Mesos Master,便于更加细粒度管理和容错,这种调度模式类似于MapReduce调度模式,每个Task完全独立,优点是便于资源控制和隔离,但缺点也很明显,短作业运行延迟大。

  1. Spark On YARN模式

这是一种很有前景的部署模式。但限于YARN自身的发展,目前仅支持粗粒度模式(Coarse-grained Mode)。这是由于YARN上的Container资源是不可以动态伸缩的,一旦Container启动之后,可使用的资源不能再发生变化,不过这个已经在YARN计划中了。
spark on yarn 的支持两种模式:

  1. yarn-cluster:适用于生产环境;
  2. yarn-client:适用于交互、调试,希望立即看到app的输出

yarn-cluster和yarn-client的区别在于yarn appMaster,每个yarn app实例有一个appMaster进程,是为app启动的第一个container;负责从ResourceManager请求资源,获取到资源后,告诉NodeManager为其启动container。yarn-cluster和yarn-client模式内部实现还是有很大的区别。如果你需要用于生产环境,那么请选择yarn-cluster;而如果你仅仅是Debug程序,可以选择yarn-client。

总结:
这三种分布式部署方式各有利弊,通常需要根据实际情况决定采用哪种方案。进行方案选择时,往往要考虑公司的技术路线(采用Hadoop生态系统还是其他生态系统)、相关技术人才储备等。上面涉及到Spark的许多部署模式,究竟哪种模式好这个很难说,需要根据你的需求,如果你只是测试Spark Application,你可以选择local模式。而如果你数据量不是很多,Standalone 是个不错的选择。当你需要统一管理集群资源(Hadoop、Spark等),那么你可以选择Yarn或者mesos,但是这样维护成本就会变高。
· 从对比上看,mesos似乎是Spark更好的选择,也是被官方推荐的
· 但如果你同时运行hadoop和Spark,从兼容性上考虑,Yarn是更好的选择。 · 如果你不仅运行了hadoop,spark。还在资源管理上运行了docker,Mesos更加通用。
· Standalone对于小规模计算集群更适合!

更多关于启动模式的介绍,可以查看先前的文章。