IN ACTI

SECOND EDITION

Amit Rathore
Francis Avila

M MANNING

Praise for the First Edition

“An easy-to-read book and a great way to get up to speed with Clojure.”
—Craig Smith, Suncorp

“A broad but thorough overview of the current state of the art in this exciting new
language.”
—Tim Moore, Atlassian

“Down-to-earth and thorough, just what you need to get building real-world applications.”
—Stuart Caborn, BNP Paribas

“I love the inclusion of testing and web topics!”
—Chris Bailey, HotelTonight

“An insightful look at Clojure and its unique position in the JVM family of languages.
A good read for anyone trying to ‘get’ Clojure.”
—Jason Rogers, MSCI Inc.

“Don't just learn Clojure—learn how to build things with it.”
—Baishampayan Ghose (BG), Qotd, Inc.

“Explains functional programming with Java.”
—Doug Warren, Java Web Services

“It shows what you can get mixing the power of Java libraries with a pragmatic func-
tional language.”
—Federico Tomassetti, Politecnico di Torino

“A very approachable text and a great introduction to Clojure and Lisp.”
—Kevin Butler, HandyApp, LLC

“Brings together the features of Clojure and shows how they can be used cohesively to
implement a number of engineering solutions. Each solution is stunningly simple and
elegant. I highly recommend this book.”

—A.B., Amazon reviewer

Clojure in Action
Second Edition

AMIT RATHORE
FRANCIS AVILA

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/l/l Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical development editors: Andrew Luly, Michael Williams
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Linda Recktenwald

Technical proofreader: Joe Smith
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617291524
Printed in the United States of America
12345678910 -EBM - 20 19 18 17 16 15

www.manning.com

contents

preface to the second edition xi
preface to the first edition xiii
acknowledgments xvi

about this book xviii

Introducing Clojure 1
1.1 Clojure: What and why? 1

Clojure: A modern Lisp 2 = Clojure: Pragmatic functional
programming 3 = Clojure on the VM 6

1.2 Language basics 7
Lisp syntax 7 = Parentheses 9

1.3 Hostinteroperation: A JVM crash course 10

Java types, classes, and objects 11 = The dot and new
operators 12 = Threads and concurrency 13

1.4 Summary 14

CONTENTS

Clojure elements: Data structures and functions 16

2.1 Coding at the REPL 16
Clojure REPL. 17 = “Hello, world!” 19 = Looking up
documentation using doc, find-doc, and apropos 20
A few more points on Clojure syntax 21
2.2 Clojure data structures 24
nil, truth, and falsehood 24 = Characters and strings 24
Clojure numbers 25 = Symbols and keywords 26
Lists 27 = Vectors 29 = Maps 31 = Sequences 33
2.3 Program structure 34
Functions 34 = Thelet form 35 = Side effects with do 37
Reader macros 38
2.4 Program flow 39
Conditionals 39 = Logical functions 41 = Functional

iteration 44 = Threading macros 50

2.5 Summary 54

Building blocks of Clojure 55

3.1 Metadata 56
Java type hints 58 = Java primitive and array types 59

3.2 Java exceptions: try and throw 60
3.3 Functions 62

Defining functions 62 = Calling functions 69
Higher-order functions 70 = Writing higher-ovder functions 73
Anonymous functions 76 = Keywords and symbols 77

3.4 Scope 80

Vars and binding 80 = The let form revisited 85
Lexical closures 86

3.5 Namespaces 87

ns macro 87 = Working with namespaces 90

3.6 Destructuring 91
Vector bindings 91 = Map bindings 93

3.7 Reader literals 95
3.8 Summary 97

CONTENTS

Multimethod polymorphism 98
4.1 Polymorphism and its types 98
Parametric polymorphism 99 = Ad hoc polymorphism 99
Subtype polymorphism 101
4.2 Polymorphism using multimethods 103

Life without multimethods 103 = Ad hoc polymorphism
using multimethods 103 = Multiple dispatch 106
Subtype polymorphism using multimethods 108

4.3 Summary 114

Exploring Clojure and Java interop 116
5.1 Calling Java from Clojure 117

Importing Java classes into Clojure 117 = Creating
instances 118 = Accessing methods and fields 119
Macros and the dot special form 120 = Helpful Clojure
macros for working with Java 122 = Implementing interfaces
and extending classes 125

5.2 Compiling Clojure code to Java bytecode 126

Example: A tale of two calculators 126 = Creating Java classes
and interfaces using gen-class and gen-interface 129

5.3 Calling Clojure from Java 133
54 Summary 134

State and the concurrent world 135
6.1 The problem with state 136

Common problems with shared state 136
Traditional solution 137

6.2 Separating identities and values 139

Immutable values 140 = Objects and time 140
Immutability and concurrency 142

6.3 Clojure’sway 143
Immutability and performance 143 = Managed references 144
6.4 Refs 145
Creating refs 145 = Mutating refs 145 = Software
transactional memory 148

6.5 Agents 150

Creating agents 150 » Mutating agents 151 = Working with
agents 152 = Side effects in STM transactions 155

viii CONTENTS

6.6 Atoms 155

Creating atoms 155 = Mutating atoms 156
6.7 Vars 157

Creating vars and root bindings 157 = Var bindings 158
6.8 State and its unified access model 159

Creating 159 = Reading 159 = Mutation 159
Transactions 160 = Watching for mutation 160

6.9 Deciding which reference type to use 161
6.10 Futures and promises 162
Futures 162 = Promises 163

6.11 Summary 164

Evolving Clojure through macros 166

7.1 Macro basics 167
Textual substitution 167 = The unless example 168
Macro templates 171 = Recap: Why macros? 176
7.2 Macros from within Clojure 177
comment 177 = declare 177 = defonce 178
and 178 = time 179
7.3 Writing your own macros 180
infix 180 = randomly 180 = defwebmethod 181
defnm 183 = assert-true 184

7.4 Summary 185

More on functional programming 186

8.1 Using higher-order functions 187
Collecting results of functions 187 = Reducing lists of
things 189 = Filtering lists of things 191

8.2 Partial application 192
Adapting functions 193 = Defining functions 196

8.3 Closures 197

Free variables and closures 197 = Delayed computation
and closures 198 = Closures and objects 199
An object system for Clojure 202

8.4 Summary 215

CONTENTS

Protocols, records, and types 217
9.1 The expression problem 218

Setting up the example scenario 218 = A closer look at the
expression problem and some potential solutions 222
Clojure’s multimethods solution 223

9.2 Examining the operations side of the expression
problem 225

def-modus-operandi 225 = detail-modus-operandi 226
Tracking your modus operandi 227 = Error handling and
trouble spots in this solution 233

9.3 Examining the data types side of the expression problem
with protocols 234

defprotocol and extend-protocol 234 = Defining data types
with deftype, defrecord, and reify 239

9.4 Summary 245

Test-driven development and more 247
10.1 Getting started with TDD: Manipulating dates
in strings 248

First assertion 248 = month-from and year-from 251

as-string 252 = Incrementing and decrementing 253
Refactor mercilessly 255

10.2 Improving tests through mocking and stubbing 256

Example: Expense finders 256 = Stubbing 257
Mocking 260 = Mocks versus stubs 261
Managing stubbing and mocking state 264

10.3 Organizing tests 265
The testing macro 266 = The are macro 266
10.4 Summary 267

More macros and DSLs 268
11.1 A quick review of macros 269
11.2 Anaphoric macros 270
The anaphoric if 270 = The thread-it macro 273
11.3 Shifting computation to compile time 276

Example: Rotation ciphers without macros 276
Making the compiler work harder 279

CONTENTS

11.4 Macro-generating macros 281

Example template 282 = Implementing make-synonym 282
Why macro-generating macros 285

11.5 Domain-specific languages 286
DSL-driven design 286 = User classification 289

11.6 Summary 299

Conclusion 301
appendix Installing Clojure 302
index 307

preface to the second edition

Many new arrivals to Clojure—including Amit Rathore, the primary author of Clojure
in Action—come from the world of enterprise software. Theirs is a world of staticly
typed, object-oriented, rigid languages tied to enormous ecosystems of tools, frame-
works, and libraries designed to introduce looser coupling among components and
ever-changing business requirements. This is the Java and C# world of dependency
injection, servlet containers, XML configuration, and code generation. Because Clo-
jure runs on Java it is a natural choice for people seeking to escape the complexity of
their world without completely leaving the good and familiar behind. The scary and
unfamiliar aspects of Clojure for enterprise software developers are its dynamic typing
and first-order functions, but the appeal of Clojure is liberation from incidental com-
plexity and static typing, while still being able to use their old code when they need to.

I did not come to Clojure from this world: I came from the Wild West of web devel-
opment. This is a crazy world of dynamically typed programming languages such as
PHP, Javascript, Python, and Ruby. Some of these languages were originally created
with little or no thought to their suitability for large projects and hastily evolved new
features and workarounds to adapt to this use. Many of their practitioners—including
myself—have no computer science training and probably started their careers by
messing around with HTML to give a web presence to their day job. Their program-
ming knowledge, like the languages they use, was hastily acquired as the demands on
their web presence grew. Unlike in the enterprise software world, dynamic typing,
automatic type coercion, and late binding are the norm, first-class functions are
common, and object-orientation is not a bedrock assumption. There are still large

PREFACE TO THE SECOND EDITION

ecosystems of frameworks and libraries, but they are not as discipline-enforcing and
configuration-oriented as in enterprise software development. For web developers,
the scariest thing about Clojure is the specter of enterprise software lurking behind
it—in a word: Java. For enterprise developers, Clojure’s Java heritage is a feature; to
web developers, it’s a bug.

If you come from the web developer world, I'm here to tell you not to be afraid of
Java. Much enterprise software complexity is compile-time: static types, verbose code,
and lots of XML configuration. I didn’t have those problems. But web development’s
complexity in popular web development languages is run-time: the weak typing and
extreme dynamism and mutability that make programs difficult to reason about. This is
the incidental complexity I was searching for a better answer to when I found Clojure,
and I was skeptical of Java too. I heard the Java EE stories, saw the enormous class files
and the FactoryFactoryInterfaces. How, I wondered, could Clojure manage software
complexity better when it is built on Java, the most notoriously rigid, brittle, and com-
plex software stack there is? And how am I supposed to balance all those parentheses?

Clojure occupies a middle ground between the undisciplined web development
world, where codebases are difficult to change safely, and the excessive ceremony in
the enterprise software world, where codebases are verbose and difficult to compre-
hend. Clojure encourages more discipline on my programs than when I was writing
PHP, but this is a discipline with no downside: your code is still as succinct (if not
more) as what you used to write; you can easily and painlessly take advantage of many
niceties of the Java ecosystem, like sane package management and jar-based deploy-
ment; and thanks to the JVM your application will probably run faster, too!

Clojure benefited me even before I wrote it professionally. Internalizing Clojure’s
philosophy of simplicity and immutability helped me recognize the root causes of the
complexity I was encountering in other languages and manage that complexity better.
I now write Clojure (and ClojureScript) for a living and, yes, there’s still plenty of inci-
dental complexity in my software, but it’s easier to see and far more manageable, and
I’'m building things I would never have dreamed of building in PHP or even Python.

The first edition of this book was instrumental in sending me down the Clojure
path I walk today. So I am honored to have had a hand in this second edition, and I
hope it can help you tame the software complexity in your life, too. And don’t be
afraid of the Java, or the parentheses! They’re really quite tame.

FRANCIS AVILA

preface to the first edition

I can tell you how much I enjoy being a geek. I can tell you how fascinated I was with the
punch cards my dad showed me back in 1985. I can tell you how I got my first computer
when I was seven. And I can tell you that I've loved programming since 1989. I can tell
you a great many things about all that, but I'm not sure how interesting they’d be.

Instead, let me tell you about my quest for an answer of sorts. There’s been one
issue about our industry that has continued to puzzle me over the years: Why is it that
no software project is ever as simple as it seems? Why is it that no project ever comes
out on time and on budget? Why are there always bugs? Why doesn’t it ever quite do
what was intended? And why is it always so hard to make changes to the software? No
matter how clean the slate is when a project starts, why does it always become a big ball
of mud?

Almost everyone acknowledges the problem, and they seem to accept the status
quo. Most of our industry deals with it by adding buffers to schedules and budgets,
and by accepting mediocre software. Isn’t there a better way?

This book is not the answer, not by a long shot. But it is part of my exploration of
the way forward. It is my notion that better tools can help us create better software.

This raises the obvious question: what is a better tool? Better at what? I believe the
answer is that a better tool is one that helps manage complexity better. After all, com-
plexity is one of the root causes for the state of things in our world. Indeed, Fred
Brooks wrote about complexity in a paper as early as 1986. He drew a distinction
between essential complexity and accidental complexity. Essential complexity is inher-
ent in the problem domain, whereas accidental complexity is introduced by things

PREFACE TO THE FIRST EDITION

external to the problem domain. For example, in a software project that deals with fil-
ing taxes, complexity that arises from convoluted tax-codes is part of the domain, and
hence essential. Any complexity that arises from, say, employing the rather intricate
visitor pattern, is accidental.

So let me rephrase my statement: a better tool helps us minimize accidental com-
plexity. It lets us do our job as best as we can, while getting out of the way. And great
tools go beyond that; they give us leverage. They let us amplify our effectiveness as
designers and programmers, without introducing problems of their own. The Lisp
programming language was designed to be just such a tool. And Clojure is an amaz-
ingly well designed Lisp.

Every programmer who stumbles onto Lisp has a story, and mine is similar to
many. I started my professional career with Java, and eventually ran into a wall with
what I could create with it. I started exploring dynamic languages and they felt more
expressive and malleable. Mostly, I enjoyed using Python and Ruby, and wrote several
nontrivial applications with them. I was working at a company called ThoughtWorks at
the time, and I had a lot of like-minded colleagues to work with. Eventually, one of
them turned me onto Common Lisp. The more I read about the language, the more I
began to realize how primitive other languages were. I used Common Lisp on a few
personal projects, but never did anything major with it; it did however have a pro-
found effect on my code in all the other languages I was using, and I kept looking for
an opportunity to use a Lisp on a real-world project.

I finally got my chance in 2008. I had moved to the Bay Area in California, and
ended up joining the founding team of a startup named Runa. In true Silicon Valley
tradition, our first office was in the founder’s garage. We wanted to disrupt the
world of eCommerce with Runa. The idea was to collect lots of data, use machine-
learning techniques to make sense of it all, and then present personal deals to select
shoppers in real-time. And in order to do all that, we had to overcome serious tech-
nological challenges. The system needed to handle thousands of requests a second.
It needed to handle several terabytes of data a day. It needed to be scriptable via a
set of high-level, declarative DSLs. It needed to support hot code-swaps so it could be
updated on the fly. It needed to run on the cloud, and it needed to be entirely API-
driven. And we had to build it without much in the way of resources; we were an
engineering team of three.

With these kinds of constraints, we needed a language that gave us leverage. So we
turned to this new language called Clojure. It was a modern, functional language that
ran on the JVM. It also promised to solve the problems inherent in concurrent, multi-
threaded code. And it was a Lisp!

I was the architect at this startup, and am now the VP of Engineering. I staked the
success of our future on this new (pre-release at the time) programming language cre-
ated by someone who I had never heard of before. But everything I read about it reso-
nated with me; all the pieces fit. We’ve been using Clojure ever since with incredible
success. Our team has grown over the past three years, but it’s still about an order of

PREFACE TO THE FIRST EDITION XV

magnitude smaller than other teams at similar companies. I suspect they’re using
plain old Java. If nothing else, the past three years have upheld my belief that tools
matter, and that some are far superior to others.

When we started out, I used to think of Clojure as our secret weapon—but the Clo-
jure community is so strong and supportive that making it an open secret seemed like a
much better idea. I started the Bay Area Clojure User Group, and we’ve now got hun-
dreds of members. I like to think there are dozens of people who have come to our
meetings, liked what they heard, and decided to use Clojure on their own projects.

In that same spirit, I wrote this book to share my experience with Clojure with you.
It’s my hope that I can convince some of you to look beyond the parentheses to what is
possible with a Lisp in general, and with Clojure specifically. I hope you find this book
useful and enjoyable.

AMIT RATHORE

acknowledgments

We’d like to thank everyone at Manning Publications who helped get this book off the
ground, including Erin Twohey and Michael Stephens for offering us the opportunity
to work on a revised edition of Clojure in Action; Karen Miller for thoroughly reviewing
the manuscript in development; Joseph Smith for his expert technical editing; and
Kevin Sullivan, Jodie Allen, Linda Recktenwald, and Mary Piergies for guiding the
book through production.

We’d also like to thank the reviewers who read the chapters numerous times dur-
ing development and who provided invaluable feedback: Bruno Sampaio Alessi, David
Janke, Fernando Dobladez, Gary Trakhman, Geert Van Laethem, Gianluigi Spagnuolo,
Jeff Smith, Jonathan Rioux, Joseph Smith, Justin Wiley, Palak Mathur, Rick Beerendonk,
Scott M. Gardner, Sebastian Eckl, and Victor Christensen.

Thanks also to our MEAP (Manning Early Access Program) readers, who posted
comments and corrections in the Author Online forum. We appreciate your interest
and support.

Finally, we’d like to thank the prophet of immutability, Rich Hickey, for creating
Clojure and encouraging us to program more simply.

Amit Rathore

Writing a book while working on a startup (and having your first child) is definitely
not a recipe for relaxation! I would never have managed to get through both editions
without the support of my incredibly patient wife, Deepthi. There were times when I

xvi

ACKNOWLEDGMENTS xvii

just hit a blank wall and her encouragement is all that kept me going. Thanks, sweet-
heart, I could never have done this without you!

I would also like to thank my parents who started me down this path all those
years ago. I grew up in India at a time when computers were these fantastical things,
out of reach for most people. They took a loan to buy me a computer, instead of
buying their first car, and without that I wouldn’t be here today. So thanks a million,
Mom and Dad!

I also want to acknowledge Ravi Mohan, who in 2001 pointed me to Lisp and to
Paul Graham’s essays. Thanks for showing me the way! And, I guess, thanks also to Paul
Graham, who is an inspiration to many of us.

Thanks to the folks at Runa, for letting me work on this book. Ashok Narasimhan,
the founder, was extremely supportive of the whole effort. The rest of my colleagues
were also very supportive. Specifically, I'd like to thank Kyle Oba and George Jahad
for their feedback and encouragement.

Finally, I'd like to give special thanks to Siva Jagadeesan who has supported me
throughout this effort in so many ways, and to Franics Avila, for stepping up and help-
ing update the book for the second edition.

Francis Avila

First of all, I would like to thank Amit Rathore, whose first edition of Clojure in Action
was important for my own introduction to Clojure three years ago. Though I have
remodeled and redecorated, the original sturdy columns are yours and remain the
true foundation of this book.

I must also thank my wife, Danielle, who encouraged me to accept Manning’s offer
to coauthor the second edition, patiently endured long nights with our newborn
daughter while I wrote, and offered another pair of proofreading eyes. Thank you for
your love and support in spite of my strange obsession with parentheses.

I also thank Breeze EHR, the tiny startup which three years ago first plunged me
into the wild and wonderful world of production Clojure. I thank especially Tyler
Tallman, the founder, heart, and soul of the company, who rescued me from the PHP
mines. And I'm sorry for being a curmudgeon every time you share an exciting new
idea with me.

about this book

A lot has changed in the software engineering world since 2011 when the first edition
of this book was published. Clojure had just released version 1.3 and the community
was hard at work on 1.4. The ThoughtWorks technology radar had just advanced
Clojure from “assess” to “trial” (https://www.thoughtworks.com/radar/languages-
and-frameworks/clojure). Adventurous programmers and software companies were
starting to take notice, but building a major project in Clojure was still a hard sell.
Now, late in 2015, Clojure is an established feature of the programming landscape.
Even household names like Walmart and Consumer Reports—companies not
known for exotic tastes—are using Clojure at the very core of their businesses (http://
cognitect.com/ clojure#successstories). Clojure is now so well established that it is no
longer on the ThoughtWorks radar at all.

Even where Clojure itself is still considered fringe, its core ideas—immutability
and functional programming—have pollinated and borne fruit. Datomic, a Clojure-
inspired immutable database, is seeing greater adoption. Java 8 now has lambdas:
anonymous inline functions designed for higher-order functional programming. And
there are now multiple immutable data structure libraries to choose from in many
different programming languages. These ideas have even sparked revolutions in
Javascript through synergies between Clojurescript (only just released in October
2011!) and Facebook’s React UI framework. Immutability and functional program-
ming are now firmly mainstream ideas.

In response to these shifts in culture, the second edition of Clojure in Action has
narrowed its focus and broadened its audience. More and more programmers outside

Xviii

https://www.thoughtworks.com/radar/languages-and-frameworks/clojure
https://www.thoughtworks.com/radar/languages-and-frameworks/clojure
http://cognitect.com/clojure#successstories
http://cognitect.com/clojure#successstories

ABOUT THIS BOOK Xix

of the Java ecosystem have heard of Clojure and are interested in learning about it, so
we expanded the introductory chapters, assumed less about the reader’s knowledge of
Java, and more brightly highlighted Clojure’s philosophical tenants, which can be
practiced beneficially in any language. With an explosion in popularity has come an
explosion of different libraries and online tutorials for common programming tasks.
Therefore we removed the hands-on chapters that dealt with the particulars of con-
necting to databases, building web services, and the like. All of these chapters have
aged poorly as libraries and alternative approaches have grown, and if we were to
rewrite them to use modern tools and techniques they would no doubt be out of date
before publication. Thankfully, it is no longer difficult to find up-to-date documenta-
tion on how to use Clojure in any software engineering subfield.

Stated simply, it is no longer as necessary to evangelize Clojure quite as much as we
did in the first edition. If you are reading this book, you probably already know it is a
mature and powerful general-purpose functional language inspired by Lisp and built
on the JVM. You've already heard stories of small Clojure teams building powerful dis-
tributed systems in a fraction of the time taken by much larger teams using other lan-
guages. You're reading this book because you want to learn how Clojure made this
possible, and how you can do it, too.

How to use this book

Learning Clojure can be quite a leap for a lot of programmers. The drastically differ-
ent syntax, the move from imperative to functional programming, immutability, the
macro system ... these can be daunting. This book takes a slow and steady approach to
learning the language and the various pieces. It assumes no prior experience with
Lisp or with any functional programming language. It starts out with the absolute
basics and slowly layers on the different features of the language in a way to make it all
fit together in an intuitive manner. It takes a first-principles approach to all the topics,
first explaining why something needs to be done a certain way, and only then talking
about the Clojure way.

Once you get past the basics, the book introduces features, concepts, and tech-
niques necessary for larger, “serious” Clojure programs written by multiple people.
You’ll see how to manage mutable state effectively, leverage higher-order functional
programming at scale, create polymorphic types and abstractions while balancing
expressivity and performance tradeoffs, write test-driven Clojure, and write domain-
specific languages. To get the most out of the book, we’ve assumed you’re familiar with
an OO language like Java, C++, Ruby, or Python, but no background in Java, Lisp, or
Clojure is required.

Roadmap

This book consists of 11 chapters, highlights of which are described below.
Chapter 1 is a high-level overview of the language and its three pillars: functional
programming with immutable data structures, lisp syntax, and interoperability with Java.

ABOUT THIS BOOK

Chapter 2 introduces the REPL (read-evaluate-print loop, which is Clojure’s com-
mand prompt shell) and gets you started writing Clojure code. It includes a survey of
function definition, flow control, and the builtin data structures.

Chapter 3 is about visiting the more exotic features of Clojure: metadata (data
annotating other data), exception handling, higher order functions (functions as
parameters to other functions), two sets of scoping rules (lexical and dynamic),
namespaces to organize your code, a destructuring syntax to pull parts of nested data
structures into variables easily and concisely, and finally reader literals which are a way
to add new literal syntax to your code. A lot of this will be different from what you may
be used to, but at the end of this chapter, you’ll be able to read and write most simple
Clojure programs.

Chapter 4 discusses the three basic kinds of polymorphism and what each looks
like in Clojure using multimethods. If you’re coming from the Java/C++ world, this is
going to be quite different. Clojure’s multimethods are an extremely open-ended way
to implement polymorphic behavior, and they give control of method dispatch
directly to the programmer.

Chapter 5 covers how Clojure embraces the JVM. No programming language can
succeed without a strong set of libraries, and Clojure neatly sidesteps this problem. It
makes it trivial to use any Java library in your programs, giving you instant access to
the thousands of battle-tested frameworks and libraries available. It also lets you con-
tinue to benefit from your previous investment in the Java stack. In this chapter you
will learn how to use Java code from Clojure, how to use Clojure code from Java, and
how to write Clojure that defines or extends Java classes.

Chapter 6 explains Clojure’s approach to state management and concurrency and
its four basic concurrency primitives. Again, this is a fresh take on the problem of
mutable state. Clojure sports extremely efficient immutable data structures and imple-
ments a database-like STM system (software transactional memory). This combination
lets the language offer builtin support for correct, safe, and lock-free concurrency.
This is a big deal! Your programs can take advantage of multiple cores without any of
the problems associated with traditional multi-threaded code.

Chapter 7 looks at yet another feature of Clojure that is different from most other
programming languages. This is the macro system (not to be confused with C macros
and the like). Clojure essentially provides language-level support for code generation.
It has a hook in its runtime that allows programmers to transform and generate code
any way they like. This is an incredibly powerful feature that blurs the line between
the language designer and an application programmer. It allows anyone to add fea-
tures to the language.

Chapter 8 dives deep into the functional programming paradigm and how to lever-
age the higher-order functions introduced in chapter 3. You'll create your own ver-
sions of the core higher-order functions: map, reduce, and filter. You’ll also get a
thorough understanding of partial application and currying of functions. Finally,
you’ll build your own OOP system on top of Clojure, and will lay to rest the concern

ABOUT THIS BOOK xxi

about how Clojure relates to the OO paradigm. In fact, you’ll not think of OO in the
same way again.

Chapter 9 deals with the expression problem and builds upon the study of poly-
morphism in chapter 4. You’ll first review what this age-old problem is, and then you’ll
use Clojure multimethods to solve it in an elegant fashion. Then, we’ll show you a
more limited but better performing solution after introducing another constellation
of Clojure features: protocols, records, and types.

Chapter 10 shows how you can raise your productivity level significantly by com-
bining the process of writing test-driven code with the Clojure REPL introduced in
chapter 2. It also addresses mocking and stubbing functions to enable better unit-
testing tactics.

Chapter 11 is the last chapter and focuses on advanced macros and DSLs and
builds upon what you will learn in chapter 7. This will bring you full circle: we started
out in search of a tool that minimizes accidental complexity. Clojure allows you to
bend the programming language to your will through the macro system, and this
chapter takes a deeper dive into this feature. You’ll design an internal DSL that will
serve as an example of how you can use DSLs to drive core business logic in your Clo-
jure applications.

Code conventions and downloads

All code in the book is presented in a fixed-width font like this to separate it from
ordinary text. Code annotations accompany many of the listings, highlighting impor-
tant concepts. In some cases, numbered bullets link to explanations that follow the
listing.

Please see the appendix for instructions on how to download and install Clojure. You
will find the full code for all the examples in the book available for download from the
publisher’s website at manning.com/books/ clojure-in-action-second-edition.

Author Online

The purchase of Clojure in Action, Second Edition includes free access to a private forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and other users. You can access
and subscribe to the forum at manning.com/books/clojure-in-action-second-edition.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct in the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. Itisn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://manning.com/books/clojure-in-action-second-edition
http://manning.com/books/clojure-in-action-second-edition

xxii

ABOUT THIS BOOK

About the cover illustration

On the cover of Clojure in Action, Second Edition is “A woman from Sinj,” a town in Cro-
atia about 30 kilometers north of Split. The illustration is taken from a reproduction
of an album of Croatian traditional costumes from the mid-nineteenth century by
Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003.
The illustrations were obtained from a helpful librarian at the Ethnographic Museum
in Split, itself situated in the Roman core of the medieval center of the town: the ruins
of Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

Sinj is located in the Dalmatian region of Croatia and women’s costumes in Dalma-
tia consist of layers of clothing worn over more clothing: a white blouse, skirt, or tunic
is most common, with a colorful, embroidered apron decorated with complicated
geometric patterns and fringes worn on top, as well as a red vest and black coat with
colorful stitching added to stand out from the white blouse underneath. Jewelry con-
sists mainly of beads worn around the neck or silver coins added as adornments to the
costume. Both men and women wear a red or white pillbox cap (called a bareta or
crvenkapa), with a white veil attached to the women’s cap, like in the illustration on
this cover.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

1.1

Introducing Clojure

This chapter covers

Clojure as a Lisp

Clojure as a functional programming language
Clojure hosted on the Java virtual machine (JVM)
Key features and benefits of Clojure

Any sufficiently complicated C or Fortran program contains an
ad hoc, informally specified, bug-ridden, slow implementation
of half of Common Lisp.

—Philip Greenspun (http://philip.greenspun.com/research/)

Clojure: What and why?

Clojure is a simple and succinct programming language designed to leverage easily
both legacy code and modern multicore processors. Its simplicity comes from a
sparse and regular syntax. Its succinctness comes from dynamic typing and func-
tions-as-values (that is, functional programming). It can easily use existing Java
libraries because it’s hosted on the Java virtual machine. And, finally, it simplifies
multithreaded programming by using immutable data structures and providing
powerful concurrency constructs.

http://philip.greenspun.com/research/

111

CHAPTER 1 Introducing Clojure

This book covers Clojure version 1.6. In the first few chapters you’ll learn the fun-
damentals of Clojure: its syntax, building blocks, data structures, Java interoperability,
and concurrency features. As we progress beyond the basics, you’ll learn how Clojure
can simplify larger programs using macros, protocols and records, and higher-order
functions. By the end of this book you’ll understand why Clojure is traveling a rare
path to popularity and how it can transform your approach to developing software.

Clojure’s strengths don’t lie on a single axis. On the one hand, it’s designed as a
hosted language, taking advantage of the technical strengths of platforms like the JVM,
Microsoft’s Common Language Runtime (CLR), and JavaScript engines on which it
runs, while adding the “succinctness, flexibility, and productivity” (http://clojure.org/
rationale) of a dynamically typed language. Clojure’s functional programming fea-
tures, including high-performance immutable data structures and a rich set of APIs
for working with them, result in simpler programs that are easier to test and reason
about. Pervasive immutability also plays a central role in Clojure’s safe, well-defined
concurrency and parallelism constructs. Finally, Clojure’s syntax derives from the Lisp
tradition, which brings with it an elegant simplicity and powerful metaprogramming
tools (http://clojure.org/rationale).

Some of these points may elicit an immediate positive or negative reaction, like
whether you have a preference for statically or dynamically typed languages. Other lan-
guage design decisions may not be entirely clear. What is a functional programming
language and is Clojure like other ones you may have seen? Does Clojure also have an
object system or provide design abstractions similar to mainstream object-oriented
(O0) languages? What are the advantages and disadvantages of hosting the language
on an existing VM?

The promise of Clojure’s synthesis of features is a language that’s composed of sim-
ple, comprehensible parts that not only provide power and flexibility to writing pro-
grams but also liberate your understanding of how the parts of a language can fit
together. Let no one deceive you: there are many things to learn. Developing in Clo-
jure requires learning how to read and write Lisp, a willingness to embrace a func-
tional style of programming, and a basic understanding of the JVM and its runtime
libraries. We’ll introduce all three of these Clojure pillars in this chapter to arm you
for what lies ahead in the rest of the book: a deep dive into an incredible language
that’s both new and old.

Clojure: A modern Lisp

Clojure is a fresh take on Lisp, one of the oldest programming language families still
in active use (second only to Fortran). Lisp isn’t a single, specific language but rather
a style of programming language that was designed in 1958 by Turing award winner
John McCarthy. Today the Lisp family consists primarily of Common Lisp, Scheme,
and Emacs Lisp, with Clojure as one of the newest additions. Despite its fragmented
history, Lisp implementations, including Clojure, are used for cutting-edge software
systems in various domains: NASA’s Pathfinder mission-planning software, algorithmic

http://clojure.org/rationale
http://clojure.org/rationale
http://clojure.org/rationale

112

Clojure: What and why? 3

trading at hedge funds, flight-delay prediction, data mining, natural language process-
ing, expert systems, bio-informatics, robotics, electronic design automation, web devel-
opment, next-generation databases (http://www.datomic.com), and many others.

Clojure belongs to the Lisp family of languages, but it doesn’t adhere to any exist-
ing implementation exclusively, preferring instead to combine the strengths of several
Lisps as well as features from languages like ML and Haskell. Lisp has the reputation
of being a dark art, a secret weapon of success, and has been the birthplace of language
features like conditionals, automatic garbage collection, macros, and functions as lan-
guage values (not just procedures or subroutines; http://paulgraham.com/lisp.html).
Clojure builds on this Lisp tradition with a pragmatic approach to functional pro-
gramming, a symbiotic relationship with existing runtimes like the JVM, and advanced
features like built-in concurrency and parallelism support.

You’ll get a practical sense of what it means for Clojure to be a Lisp when we
explore its syntax later in this chapter, but before we get bogged down in the details,
let’s consider the other two pillars of Clojure’s design: Clojure as a functional pro-
gramming language hosted on the JVM.

Clojure: Pragmatic functional programming

Functional programming (FP) languages have seen an explosion in popularity in the
last few years. Languages like Haskell, OCaml, Scala, and F# have risen from obscurity,
and existing languages like C/C++, Java, C#, Python, and Ruby have borrowed fea-
tures popularized by these languages. With all of this activity in the community, it can
be difficult to determine what defines a functional programming language.

The minimum requirement to be a functional language is to treat functions as
something more than named subroutines for executing blocks of code. Functions in
an FP language are values, just like the string "hello" and the number 42 are values.
You can pass functions as arguments to other functions, and functions can return
functions as output values. If a programming language can treat a function as a value,
it’s often said to have “first-class” functions. All of this may sound either impossible or
too abstract at this point, so just keep in mind that you’re going to see functions used
in new, interesting ways in the code examples later in this chapter.

In addition to functions as first-class values, most FP languages also include the fol-
lowing unique features:

= Pure functions with referential transparency
= Immutable data structures as the default
= Controlled, explicit changes to state

These three features are interrelated. Most functions in an FP design are pure, which
means they don’t have any side-effects on the world around them such as changing
global state or doing I/O operations. Functions should also be referentially transpar-
ent, meaning that if you give the same function the same inputs, it will always return
the same output. At the most elementary level, functions that behave this way are

http://www.datomic.com
http://paulgraham.com/lisp.html

CHAPTER 1 Introducing Clojure

Xs

Figure 1.1 Representation of a tree of

values called xs. Used with permission
° ° o ° from https://commons.wikimedia.org/wiki/
File:Purely_functional_tree_before.svg.

simple, and it’s simpler and easier' to reason about code that behaves consistently,
without respect to the implicit environment in which it runs. Making immutable
data structures the language default guarantees that functions can’t alter the argu-
ments passed to them and thus makes it much easier to write pure, referentially
transparent functions. In a simplistic sense, it’s as if arguments are always passed by
value and not by reference.

“Hold on,” you might say, “passing arguments by value and copying data structures
everywhere is expensive, and I need to change the values of my variables!” Clojure’s
immutable data structures are based on research into the implementation of perfor-
mant, purely functional data structures designed to avoid expensive copying.? In the-
ory, if you make a change to an immutable data structure, that change results in a
brand-new data structure, because you can’t change what’s immutable. In reality, Clo-
jure employs structural sharing and other techniques under the hood to ensure that
only the minimum amount of copying is performed and that operations on immuta-
ble data structures are fast and conserve memory. In effect, you get the safety of pass-
ing by value with the speed of passing by reference.

Persistent data structures can’t be changed, but the diagrams in figures 1.1 and 1.2
demonstrate how one might “edit” a persistent tree. The tree xs shown in figure 1.1 con-
sists of immutable nodes (circled letters) and references (arrows), so it’s impossible to
add or remove a value from tree xs. But you could create a new tree that shares as
much of the original tree xs as possible. Figure 1.2 demonstrates how you can add a
new value eby creating a new set of nodes and references in the path to the root of the
tree (d', g’, f') that reuse old nodes (b, a, ¢, and #), resulting in the new persistent tree
ys. This is one of the basic principles underlying Clojure’s persistent data structures.

1

See the talk “Simplicity Ain’t Easy” to understand the unique role simplicity has in Clojure’s design consid-
erations: http://youtu.be/cidchWg74Y4. For a deeper but more abstract and less Clojure-centric presen-
tation of the easy-versus-simple distinction, watch “Simple Made Easy” by Clojure’s creator Rich Hickey:
http://www.infoq.com/presentations/Simple-Made-Easy.

Chris Okasaki, Purely Functional Data Structures, 1996. Download thesis at http://www.cs.cmu.edu/~rwh/theses/
okasaki.pdf.

http://youtu.be/cidchWg74Y4
http://www.infoq.com/presentations/Simple-Made-Easy
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
https://commons.wikimedia.org/wiki/File:Purely_functional_tree_before.svg
https://commons.wikimedia.org/wiki/File:Purely_functional_tree_before.svg

Clojure: What and why? 5

Figure 1.2 Representation of new
tree ys. Used with permission from
https://commons.wikimedia.org/wiki/
File:Purely_functional_tree_after.svg.

Things in your programs change, though. Most programming languages have vari-
ables that serve as named pieces of state that you can change at any time. In Clojure,
the story is more controlled and better defined. As a fact, values like the number 42
can’t change; 42 is 42, and subtracting 2 from 42 doesn’t change the number 42 but
rather gives a new value of 40. This truth extends to all values, not just numbers. On
the other hand, if you have a variable acting as the identity for something in your pro-
gram that has the value 42 initially assigned to it, you might want to assign a new value
to that variable at some later point in your program. In this case a variable is like a
container into which you may put different values at different times. In a multi-
threaded, concurrent world, your programming language should provide you assur-
ances about how those changes take place, and Clojure does just that.

Clojure lets you change the values variables hold but with well-defined semantics
regarding how and when the changes take place. If you have one variable and you
want to change its value, Clojure lets you do that atomically, so you’re certain that if
multiple threads of execution are looking at a variable’s value, they always get a con-
sistent picture, and that when it changes it does so in a single, atomic operation.” If
you need to change multiple variables together as a unit, Clojure has a separate facil-
ity using its software transactional memory (STM) system to change multiple vari-
ables as part of a transaction and rollback changes if they don’t all complete as
expected. If you need to change a variable but want that change to happen on a sep-
arate thread of execution so it doesn’t block the main thread of your program,
Clojure provides facilities for that as well. All of these are built into the core of the

® In this case, “atomic” is a synonym for “indivisible.” If an operation is atomic, then no other operations can
interfere with the underlying state while it’s being changed. If any other processes attempt to get the state of
a variable during an atomic operation, they simply get the last value of the variable before the atomic opera-
tion began. In the case of other processes attempting to change the underlying state during an atomic oper-
ation, they’re held off until the atomic operation is complete.

https://commons.wikimedia.org/wiki/File:Purely_functional_tree_after.svg
https://commons.wikimedia.org/wiki/File:Purely_functional_tree_after.svg
http://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Purely_functional_tree_after.svg/438px-Purely_functional_tree_after.svg.png

113

CHAPTER 1 Introducing Clojure

language, making concurrency so easy you have to work to make your programs not
support it.*

Functional languages are often judged by their functional “purity,” or strict adher-
ence to the theoretical underpinnings of functional programming language design.
On the one hand, Clojure’s default use patterns encourage pure functional program-
ming: immutable data structures, higher-order functions and recursion that take the
place of imperative loops, and even a choice between lazy or eager evaluation of col-
lections. On the other hand, Clojure is pragmatic. Even though most problems can be
solved using immutable data structures and functional programming patterns, certain
tasks are more clearly modeled with mutable state and a more imperative approach.
Clojure provides constructs with well-defined semantics for sharing state and chang-
ing it over time as we’ve just described. In addition, Clojure also doesn’t require the
developer to annotate code that causes side-effects, whether they be changes to state,
printing to the screen, or network 1/0, as some “purer” functional programming lan-
guages require.

Another part of Clojure’s pragmatism stems from its hosted design. When necessary,
you can always drop down to the host platform and use Java APIs directly from Clojure,
with all of the performance (and pitfalls) that come from coding directly in Java.

Clojure on the JVM

Clojure was designed as a hosted language. Whereas most programming language proj-
ects combine a language design with an accompanying runtime platform for that lan-
guage, Rich Hickey, Clojure’s creator, decided to focus on Clojure-the-language and
rely on existing VMs for the runtime platform. He began his work on the JVM, but Clo-
jure has since spread to the CLR with interoperability with the .NET ecosystem (Clojure-
CLR), as well as to browser and server-side JavaScript engines (ClojureScript).

Rich made this decision with the best kind of engineering laziness in mind
(http://blog.codinghorror.com/how-to-be-lazy-dumb-and-successful /). The JVM is a
mature, ubiquitous platform with a myriad of third-party libraries. The canonical
HotSpot JVM implementation is open source and sports an advanced just-in-time (JIT)
compiler with choice of garbage collectors, maintaining competitive performance with
“native” runtimes for a variety of use cases.” By taking these features for granted as
part of the underlying runtime host, the Clojure community is free to focus its time on
a solid language design and higher-level abstractions instead of reinventing the VM
wheel (and the bugs that come with it).

From a business perspective, relying on existing VMs lowers the risk of introducing
Clojure. Many organizations have existing architectures and personnel expertise tied

* For those already familiar with Clojure, note that we use the term variable loosely at this point to introduce
Clojure’s unique handling of values, identities, and underlying state and how those all change over time. We’ll
cover the specifics of Clojure’s concurrency constructs in a later section using Clojure’s precise terminology.

% A fine starting point for an overview of JVM performance characteristics is the Wikipedia article on Java per-
formance at http://en.wikipedia.org/wiki/Java_performance.

http://blog.codinghorror.com/how-to-be-lazy-dumb-and-successful/
http://en.wikipedia.org/wiki/Java_performance

1.2

121

Language basics 7

to the JVM or the CLR and the ability to introduce Clojure as part of a larger Java or C#
application is a powerful selling point. Clojure compiles down to bytecode on the JVM
and Common Intermediate Language (CIL) on the CLR, meaning that it participates
as a first-class citizen of the VMs it runs on.

On the other hand, Clojure intentionally doesn’t shield you from the host plat-
form on which it runs. To be effective in Clojure on the JVM, you’ll have to learn about
its runtime environment, including the following at a minimum:

= Java’s core java.lang.* classes and their methods
= The JVM’s threading/process model
= How the JVM finds code to compile on its classpath

We’ll introduce these minimum Java and JVM concepts in this chapter and more
advanced topics as we encounter them, so you don’t need to put this book down and
study Java first. If you’re interested in working with Clojure on the CLR or a JavaScript
engine, you’ll need to have an equivalent understanding of those platforms to use
Clojure on them effectively.

Now that you have a high-level understanding of Clojure as a functional Lisp on
the JVM, let’s get started writing some Clojure code to bring these concepts to life.

Language basics

It’s impossible to separate the Lisp, functional programming, and JVM features of Clo-
jure. At every step they play on each other and tell a compelling software development
story, but because we have to start somewhere, tackling the syntax on the page is a
good place to start.

Lisp syntax
Clojure’s syntax is derived from its Lisp roots: lots of parentheses. It’s alien to most
developers with experience in languages with Algol-inspired syntax like C, C++, Java,
Python, Ruby, Perl, and so on. Because it’s so foreign, there are some tricks we’ll
employ for getting over the parenthesis hump:

= Initially ignore the parentheses.

= Consider how other languages use parentheses.

= See parentheses as “units of value” or expressions.

= Embrace the parentheses.
To convince you that initially ignoring the parentheses is okay, let’s take our first look
at some example code:

(get-url "http://example.com")

If you guessed that this makes an HTTP request for the URL http://example.com,
you’re correct. The get-url function isn’t defined in Clojure by default, but it makes
for a nice self-describing function name, and we’ll use this as one of our main examples

http://example.com/

CHAPTER 1 Introducing Clojure

once we get past the basics. Let’s look at some code examples that use built-in Clojure
functions and see their output:

(str "Hello, " "World!")

;; Result: "Hello, World!"

; (A Semi-colon starts a code comment which continues
; to the end of the line.)

The str function stands for “string” and concatenates its arguments into a single out-
put string. Other languages generally use an operator like +. What would it look like
to concatenate several strings with operators?

"Hello from " + "a language " + "with operators";
Result: "Hello from a language with operators"

This is called infix notation because you put the operator in belween each string that
you’re concatenating. As a Lisp, Clojure uses prefix notation for all of its functions and
even things that look like operators, so if you need to concatenate more than two
strings, you just keep passing arguments to the str function:

(str "Hello from " "Clojure with " "lots of " " arguments")
;; Result: "Hello from Clojure with lots of arguments"

And if you need to do arithmetic, the same principle holds:

(+ 1 2)

;; Result: 3
(+ 1 2 3)

;; Result: 6

These examples demonstrate two advantages of Clojure’s approach. First, there’s no
difference between functions and operators because Clojure doesn’t have operators.
There’s no system of operator precedence to memorize. The forms str and + are both
regular Clojure functions; one just happens to have a nonalphabetic character as its
name. Second, because you don’t need to interleave operators between arguments,
it’s natural for these kinds of functions to take an arbitrary number of arguments
(called variable arity), allowing you to add more arguments without fear of forgetting
to put an operator in between each one.

In the preceding examples, you can safely ignore the parentheses, but let’s step up
the difficulty. If you needed to do more than one operation, you might write the fol-
lowing in a language that uses operators for arithmetic:

3+ 4 % 2

In a language with operators you’d need to remember the precedence of the + and *
operators, but you can make this unambiguous regardless of language by surrounding
expressions with parentheses:

3+ (4 * 2)
Result: 11

122

Language basics 9

By not having operators, Clojure makes that level of explicitness a requirement:

(+ 3 (* 4 2))
;; Result: 11

Let’s break that down expression by expression.

The outermost function is +, which has two arguments: 3 and the form (* 4 2). You
know what 3 is all about, so let’s solve the (* 4 2). If you call the multiplication func-
tion * with arguments of 4 and 2, you get 8. Let’s write the expression again, solving
the (* 4 2) step first, bolding the important parts to call your attention to them:

(+ 3 (* 4 2))
(+ 3 8)
;; Result: 11

Now you have the + function with two simple arguments and the sum is obviously 11.
Although leveraging operators and their precedence rules makes writing such mathe-
matical expressions more concise in other languages, Clojure makes calling functions
completely consistent across the language.

Now that you’ve seen some parentheses in action, let’s stop ignoring them for a
moment and understand their primary purpose.

Parentheses

Lisp’s use of parentheses is its secret syntactic weapon, but we’re not going to delve
into their deeper purpose right now. For the sake of reading and writing your first
Clojure programs, we’re going to say that parentheses serve two purposes:

= (Calling functions
= Constructing lists

All of the code so far has shown examples of the first pur- Function

pose—to call functions. Inside a set of parentheses, the first \‘

language form is always a function, macro, or special form, (+38)

and all subsequent forms are its arguments. Figure 1.3 is a /4 \\
simple example of this use of parentheses. We’ll cover Argument | Argument 2

what macros and special forms are as we encounter them,
but for now you can think of them as functions that get Figure 1.3 Parentheses for
special treatment. calling functions

Start training your brain to associate left parenthesis
with function invocation. That left parenthesis is like a
phone being held up to the function’s ear, getting ready to call it with the rest of the
items up to the matching right parenthesis. It will become increasingly important to
have this association firmly planted in your mind once we start looking at higher-order
functional programming patterns. Also remember that arguments to functions won’t
always be simple values but, as in the earlier examples, will be nested expressions—see
figure 1.4 for an example.

10

1.3

CHAPTER 1 Introducing Clojure

The second use of parentheses is at once Argument | to

the most common and the least noticeable—to outer function

construct lists. On the one hand, Clojure has Outer Argument 2 to
literal syntax for collections other than lists, function outer function

and idiomatic Clojure programs use all of the \\ —

collection types based on their different per- (+3(*42))

formance strengths. Clojure isn’t as list-centric /‘ \\

as other Lisps, in part because it provides lit- Inner Argument 2 to
eral syntax for these other types of collections. function inner function
On the other hand, at the meta level, your Argument | to

entire Clojure program is a series of lists: the inner function

very source code of your program is inter-
preted by the Clojure compiler as lists that con- Figure 1.4 Nested parentheses for calling
tain function names and arguments that need functions
to be parsed, evaluated, and compiled. Because
the same language features are available at both
the lower compiler levels and in your normal program code, Lisp enables uniquely pow-
erful meta-programming capabilities. We’ll delve into the significance of this fact when
we discuss Clojure macros in later chapters, but for now let’s take a tour of Clojure’s
essential data structures and collection types so we can read realistic code examples.
You’ve now seen Clojure’s essential syntax: parentheses that contain functions (or
special things that act like functions) and their arguments. Because parentheses are
the containers for all expressions in the language, you edit your Clojure code by
arranging these expressions like building blocks, each one a little self-contained world
of functionality that results in a consistent value and can be placed anywhere in your
program where that value is required. Moreover, this consistency in parenthetical syn-
tax means IDEs and text editors can provide structural editing for moving expressions
around easily, meaning you never have to make sure your open and close parentheses
are matched. As you spend more time writing Clojure, we highly recommend learning
some of these tools in your development environment of choice, so that Clojure’s
parentheses become an advantage and not a hindrance.

Host interoperation: A JYM crash course

Clojure doesn’t hide the host platform on which it’s implemented from the program-
mer. In this book we’ll focus on the canonical JVM implementation of Clojure, but the
principles of interoperation with the host, usually just called interop, are common to all
of the platforms that Clojure targets. Because Clojure embraces its host platform
instead of trying to hide it, you must learn the basics of Java and the JVM to be able to
code in Clojure.

Java is three distinct pieces that were designed and shipped together: a language, a
virtual machine, and a standard library. Parts of Clojure are written in Java the lan-
guage, but Clojure itself doesn’t use it. Instead, Clojure code is compiled directly to

13.1

Host interoperation: A JVM crash course 11

bytecode for the JVM to run. Clojure also requires you to use the standard library for
many basic functions. Because the standard library was written in and for Java the lan-
guage, some basic knowledge of Java the language will help you make better use of
Java the library.

In many cases Clojure uses Java types and the standard library directly. For example,
strings in Clojure are Java String objects and literal numerals are Java Long objects, and
Clojure’s collections implement the same collection interfaces implemented by Java
collections. Reusing Java types and interfaces has the added benefit that Java code can
use Clojure types (such as its immutable data structures) seamlessly.

Sometimes Clojure wraps Java library features with functions of its own, like many
of the functions in Clojure’s clojure.string namespace that delegate to methods in
Java’s string class. But often there’s no Clojure wrapper and you’ll need to call Java
methods directly. For example, Clojure doesn’t implement regular functions for
mathematical methods like abs[olute], exp[onent], log, sin, cos, and tan found in the
java.lang.Math® class, which therefore need to be invoked via the Java interop syntax
we introduce later in this section.

Let’s briefly review Java’s types, classes, and object system, so that we can make
sense of what it means for Clojure code to interoperate with Java.

Java types, classes, and objects

Java is an object-oriented language based on a class hierarchy with single inheritance.
In addition to classes, common behaviors can be grouped into inferfaces, which act as
simple outlines of method signatures that classes that implement the interface must
support.” Only one public class or interface can be defined in a single file, and those
files must be placed in directories that are on Java’s classpath. The Java classpath is
akin to C’s search path or Ruby’s SLOAD PATH in that it’s a collection of directories that
the Java compiler will search when looking for files to compile as part of your pro-
gram. The fully qualified name of a Java class or interface consists of its package name
followed by the name of the class or interface being defined; for example, Java’s Math
class is situated in the java.lang package. This allows individual classes to share the
same name (for example, Math) as long as they aren’t in the same package and thus
have a unique full name when loaded into the JVM (for example, java.lang.Math vs.
com.mycompany .Math).

What does all of this have to do with Clojure? All of the classes located in Java’s
java.lang package are imported by default in all Clojure programs, so that you can refer
to things like String and Integer without having to type out java.lang.String and
java.lang.Integer. Many Clojure data structures (especially collections) implement

6

API documentation for the Math class can be found at http://docs.oracle.com/javase/7/docs/api/java/lang/

Math.html.

7 Java 8 introduced default methods for interfaces. Because, as of this writing, Clojure currently targets Java 6
as its minimum target version, we’ll continue to treat interfaces as simple method contracts without default
implementations.

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

12

1.3.2

CHAPTER 1 Introducing Clojure

Java interfaces, so Java libraries that expect objects that implement those interfaces
will accept Clojure data structures as arguments. All Clojure collections, for example,
implement java.lang.Iterable or java.util.Collection, whereas only some imple-
ment java.util.List or java.util.Map, depending on their purpose.

Like the Java compiler, the Clojure compiler expects to find your Clojure source
code on the Java classpath and also expects that the full name of a namespace be
unique. Appendix A covers the particulars of how projects are organized on the file
system, how the classpath is set up, and how to invoke the Clojure compiler.

The flip side to having to learn some Java basics is that you get access to a plethora of
mature, battle-tested Java libraries that you can consume seamlessly from your Clojure
programs: Joda Time provides correct date and time manipulation; JDBC drivers expose
a common API for communicating with different databases; Jetty is an advanced embed-
dable web server; Bouncy Castle has a convenient API for working with Java’s crypto-
graphic features; Selenium WebDriver lets you test web applications by controlling real
web browsers programmatically; and the various Apache Commons libraries provide
miscellaneous utilities that act as an extended Java standard library. In addition to appli-
cation libraries, you can use all of the builtin tools for monitoring the performance of
the JVM, as well as external profilers like VisualVM, YourKit, and profilers-as-a-service like
New Relic to gain a deeper understanding of how your Clojure applications run.

Having described all the wonderful features you have access to via Java interop, we
still haven’t discussed how to access them from Clojure. How does Clojure differenti-
ate between regular Clojure code and code that does Java interop? The first part of
this answer is the dot operator.

The dot and new operators

The dot operator—uwritten as a literal .—forms the basis for Java interop. When seen
by itself after an opening parenthesis, it should be read as “in the scope of A do B with
arguments....” For example:

(. Math PI)

;7 Result: 3.141592653589793
(. Math abs -3)

;; Result: 3

(. "foo" toUpperCase)

;i Result: "FOO"

To accommodate the fact that, outside of Java interop, the first form in a Clojure
expression is a function, macro, or special form, Clojure provides some syntactic sugar
to make this code more idiomatic.

The first two examples deal with static members of the Math class and can be
rewritten like this:

Math/PI;; Result: 3.141592653589793
(Math/abs -3)
;; Result: 3

133

Host interoperation: A JVM crash course 13

Fields and methods that are static (defined on the class and not on instances of the
class) are accessed with a forward slash. In the Java Math class, PI is a static field and
not a method, so it doesn’t need to be invoked (using parentheses) to return a value.
But abs is a method, so it must still be invoked with parentheses.

The third example is an instance method invocation: it calls the toUpperCase
method of the string instance "foo". This example can be rewritten as follows to make
it look more like a function call:

(.toUpperCase "foo")
;: Result: "FOO"

To create instances of classes, you can use the new operator or a trailing dot to indicate
that the class’s constructor should be called:

(new Integer "42")
;7 Result: 42
(Integer. "42")

;; Result: 42

The trailing dot here, the leading dot for instance fields and methods, and the for-
ward slashes for static fields and methods are all syntactic conveniences. During Clo-
jure’s macro expansion phase of compiling code, the trailing dot expands to use the
new special form, and the others expand to the standalone dot form demonstrated at
the beginning of this section, so they’re all literally equivalent by the time your Clo-
jure code is evaluated.

The dot operator only provides a doorway for consuming Java APIs. We’ll cover
other advanced topics of Java interop that involve extending Java’s class system in later
chapters. More importantly, we’ll explore the powerful design abstractions that Clo-
jure provides in spite of the underlying object-oriented nature of its host platform as we
work through programs in later chapters. Before closing out this chapter, we should
touch on one more aspect of the JVM that’s central to Clojure’s mission: the JVM
model for threads and concurrency.

Threads and concurrency

A thread represents program execution. Every program, regardless of programming
language, has at least one main thread or process in which the application code is
being evaluated. In addition to this main application thread, language runtimes gen-
erally provide a way to start new, separate threads of execution. The default runtimes
for Ruby and Python, for example, provide lightweight or “green” threads that are
managed completely by the runtime itself. JVM threads map directly to native system
threads, which means they can take advantage of multiple CPU cores “for free” by let-
ting the operating system manage scheduling threads and delegating to CPUs. By
engaging all available cores on a machine using native threads, the JVM provides gen-
uine and performant parallelism.

14

14

CHAPTER 1 Introducing Clojure

In an application with a single thread of execution, the program is evaluated
serially, and it’s relatively simple to understand when objects are created, changed,
and destroyed based on the flow of the program. But when introducing additional
threads of execution that are running at the same time as the main thread, issues of
concurrency have to be dealt with. If you have state (a variable) that can be accessed
from multiple threads simultaneously, how can you be sure that two threads aren’t
attempting to make changes to that state at the same time? Are you certain that
changes to the state can be performed atomically, such that no other threads see a
corrupt “in progress” state for a variable that’s being changed during a program’s
execution?

Although Java has all the tools necessary to write safe concurrent programs with
shared mutable state, in practice it’s extremely difficult to write such programs cor-
rectly. Having spent years writing such programs himself in Java and other languages,
Rich Hickey implemented a set of concurrency constructs in Clojure that not only
allow for correctness but also enforce it at the language level.

By virtue of the fact that Clojure’s core data structures are all immutable, the issue
of shared mutable state becomes largely moot. When some mutable state is required,
Clojure provides concurrency data structures called vars, atoms, vefs, and agents that
have clearly defined semantics for how to change the underlying state they reference.
Furthermore, Clojure always allows fast access to the value of these data structures—
even if they’re in the middle of being changed by another thread—by maintaining a
snapshot of the old values during changes. For use cases that need only parallel execu-
tion but not shared state, Clojure provides futures and promises similar to other lan-
guages but implemented using JVM threads and not bound to any particular callback
as is common in languages like JavaScript.

Instead of comparing all of the specific features of each concurrency construct in
the abstract or listing all the functions that deal with parallel execution here, we’ll
continue exploring these topics in more depth with code examples in later chapters.

Summary

We’ve completed our transit around the three basic pillars of Clojure: functional pro-
gramming with immutable data structures, Lisp syntax, and host interop. You now
know the absolute basics of reading Lisp and Java interop code, and we can continue
to explore Clojure’s functions and data structures and worry about the underlying
platform only when the need arises.

The most difficult aspect of learning Clojure for most developers isn’t the syntax of
Lisp or the idiosyncrasies of the JVM platform. The truly mind-bending part of coding
in Clojure comes from the shift from an imperative mindset (prevalent in most main-
stream languages) to a functional programming approach to program design. Much
of your time in the beginning will be spent wondering how to accomplish things in
Clojure that you can already do easily in your imperative language of choice. In our
experience, people often spend more time unlearning complex idioms from other

Summary 15

languages than they do learning the simple, flexible, and composable parts that make
up the Clojure language.

The chapters that follow will cover Clojure’s core data structures and APIs in detail
using code examples that demonstrate the strengths of Clojure’s language design. By
the end of the next chapter, you’ll have the skills to set up your own Clojure projects
and write small- to medium-size programs.

Clojure elements: Data
structures and functions

This chapter covers

m Clojure’s core data structures
m Clojure functions
®m Program flow with Clojure

In the previous chapter, you read about some features of the Clojure language that
make it interesting. You saw some code, but it probably looked a little alien. It’s now
time to set that right. This chapter and the next address the basics of writing code
in Clojure. This one will give an overview of the various data structures that make
up the core of the language and walk you through the fundamentals of the struc-
ture and flow of Clojure programs. By the end of the next chapter, you’ll be able to
read most Clojure code and write your own programs.

Coding at the REPL

Unlike many other languages, Clojure doesn’t have to be typed into files and com-
piled all at once. Instead, you can interactively build a working program an expres-
sion at a time and try out code immediately. This form of interactive development
is possible through the read-evaluate-print loop (REPL). It’s an interactive shell sim-
ilar to those provided by languages such as Ruby and Python. In this section we’ll

16

211

Coding at the REPL 17

introduce you to interacting with a live Clojure environment through the REPL, which
will enable you to follow along with the lessons in this chapter and the next. We
encourage you to read these chapters near a REPL, copy the examples, explore differ-
ent approaches, and try some code of your own and see what happens.

If you haven’t already done so, get a Clojure REPL up and running—see appendix A
for instructions. (If you don’t want to wait, go to http://www.tryclj.com.)

Clojure REPL

Clojure programs are usually not all typed out in one go. In fact, these days, programs
in most languages are often written using test-driven design (TDD). This technique
allows the programmer to build up a larger program from smaller units of tested
code. Doing this keeps programmer productivity high because the focus is always on
one piece of the program at any given time. You write the test for something, write just
enough code to make the test pass, and repeat the process. This style of development
also has the added benefit of leaving behind a set of regression tests that can be used
later. It ensures that as the program is modified and enhanced, nothing breaks exist-
ing functionality.

Clojure code can also be written with a TDD approach; indeed, it often is. The Clo-
jure REPL adds a fantastic tool that allows you to be even more productive than when
using plain TDD. This combination of using the REPL alongside the typical TDD style
results in far shorter code-test-debug cycles.

The REPL prompt (the text behind the cursor that waits for keyboard input) is the
name of the active namespace followed by the > symbol. When you first start the REPL,
you’ll see the following prompt:

user>

As this prompt shows, Clojure puts you into the default namespace of user. You can
type Clojure code at this prompt. When you finish typing in a form (a single valid
expression, also called a symbolic expression or s-expression)1 and press Enter, the
Clojure reader accepts the stream of characters from the prompt (or any other source)
and converts it into Clojure data structures. The data structures are evaluated to pro-
duce the result of the program, which is usually another data structure. The Clojure
printer attempts to print the result in a format that can be read back by the reader.
Finally, Clojure loops back and waits for more input.

! If you want to be super-pedantic, there’s a distinction between “form” and “expression.” A form is a single
readable unit, such as a number, a pair of matched quotation marks for a string, or a pair of matched paren-
theses. Forms are what matter when reading. An expression is something with a value, such as a data structure.
Expressions are what matter when evaluating. This distinction between forms and expressions, reading and
evaluating, is another symptom of Lisp’s nonsyntax as explained in chapter 1: it’s possible to read forms with-
out knowing how to evaluate them as expressions!

http://www.tryclj.com

18

CHAPTER 2 Clojure elements: Data structures and functions

Let’s look at a concrete example of REPL interaction:

user> (+ 1 2) 4—‘ Type this part

=> 3

user> (def my-addition (fn [operandl operand2] (+ operandl operand2)))
=> #'user/my-addition

user> (my-addition 1 2)

=> 3

user> (my-addition 100 30)

=> 130

user> (+ 1 2) "Two forms on one line!"
=> 3

=> "Two forms on one line!"

Lines starting with => are the printed values of the expression evaluated on the previ-
ous prompt. The first expression adds 1 and 2. The second expression defines a
namespace-qualified global user/my-addition, which contains an addition function.
That funny-looking #'user/my-addition is a var (created and returned by def). A var
is a named, mutable container that holds a value, in this case the addition function.
You’ll learn more about vars later. For now, just know that if you want to save the value
of an expression to refer to it later, use (def variable-name "value to save").

The third and fourth expressions invoke the newly defined addition function and
return the results. There’s no explicit “return” from the function—the value returned
from a function is always the last expression evaluated in the function.

Notice from the final three lines that the REPL isn’t run per prompt or per line but
per form. Clojure reads until it sees a complete form, then evaluates and prints, and
then if there are still characters in its buffer it reads another form, evaluates, and prints.
The REPL will not prompt the user for more input until it runs out of complete forms
to read (which is exactly what happens when Clojure is reading code out of a file
instead of from the prompt).

Functions like my-addition are usually created first in the REPL and then tested with
various inputs. Once you're satisfied that the function works, you copy the test cases into
an appropriate test file. You also copy the function definition into an appropriate source
file and run the tests. At any time you can modify the definition of the function in the
REPL by redefining it, and your tests will run using the new definition. This is because
the REPL is a long-running process with the various definitions present in memory. That
means that functions using any such redefined functions will exhibit the new behavior.

Various editors can integrate with the REPL and provide convenient ways to evalu-
ate code from inside files being edited. This kind of integration further increases the
productivity of the REPL-based TDD cycle. (Chapter 10 has much more detail on test-
ing and TDD using Clojure.)

Now that you’re somewhat comfortable interacting with a Clojure environment via
the REPL, it’s time for you to write some more code. We’ll begin with the traditional
“Hello, world!” program, and before ending the section, we’ll address a few more
points about Clojure syntax.

212

Coding at the REPL 19

“Hello, world!”

Let’s get started with a simple program. To keep with tradition, we’ll examine a pro-
gram that prints “Hello, world!” as shown here:
user> (println "Hello, world!")

Hello, world!
=> nil

Pretty simple, right? But there are still a few points to note. First, notice that “Hello,
world!” was printed on a line by itself, with no => in front of it, and that a second line
says nil. What’s going on? The function println is unusual (well, for Clojure)
because it’s a side-effecting function: it prints a string to standard-out and then
returns nil. Normally you want to create pure functions that only return a result and
don’t modify the world (for example, by writing to the console). So the Hello, world!
line was printed during the REPL’s evaluation phase, and the => nil line was printed
during the REPL’s print phase.

From now on we’ll omit the user> prompt and begin result lines with ; => if there’s
no ambiguity between return values and printed side effects. This is a convention
designed to facilitate easy copy-pasting of Clojure code into files and REPLs.

Magic REPL VARIABLES

There are also four magic REPL variables that you should keep in mind to save you
some typing as you experiment in the REPL: *1, *2, *3, and *e. These variables hold
the value of the last, second-last, and third-last successfully read forms (that is, the
lines starting with =>) and the last error. Each time a new form is evaluated success-
fully, its value is put in *1, and the old *1 moves to *2, and the old *2 moves to *3.
For example:

"expression 1"

;=> "expression 1"
"expression 2"

;=> "expression 2"
*1

;=> "expression 2"

;=> "expression 1"
||a|| ||b|| ||C||

i=> "a"

;=> b

;=> "en Save "a"

*3 for later

j=> "a"

(def a-str *1) a-str contains value
;=> #'user/a QJ that was in *1.
a-str

;=> "something else"
"something else"
;=> "something else"

a-str T still nan

;=> "an

Becomes new
value of *1

20

2.1.3

CHAPTER 2 Clojure elements: Data structures and functions

If there’s an error, the number variables stay the same and the error is bound to *e:

0))

i=> ()

RuntimeException Unmatched delimiter:) clojure.lang.Util.runtimeException
(Util.java:221)

*1

i=> ()

*e

;=> #<ReaderException clojure.lang.LispReader$ReaderException:
java.lang.RuntimeException: Unmatched delimiter:)>

Before moving on to the various topics planned for this chapter, let’s look at a couple
of facilities provided by Clojure that can help with the learning process itself.

Looking up documentation using doc, find-doc, and apropos

Thanks to a feature of Clojure called metadata, all functions have documentation
available at runtime, even in the REPL. You’ll learn more in chapter 3 about adding
documentation to functions you define yourself and about custom metadata, but
before we introduce these concepts formally, we’ll review a family of functions you can
use to search for and read Clojure documentation as you explore in the REPL: doc,
find-doc, and apropos.

DOC

Clojure provides a useful macro called doc that allows you to look up the documenta-
tion associated with any other function or macro. It accepts the name of the entity
you’re trying to learn about. Here’s an example:

user> (doc +)

clojure.core/+

([1 [x] [x y]l] [x y & morel)
Returns the sum of nums. (+) returns 0.

Note that it prints not only the documentation string but also what arguments can be
passed to the function or macro. The line ([] [x] [xy] [xy &more]) is the argument
specification. Each pair of square brackets describes a possible way of calling the func-
tion. For example, the + function can be called in any of the following ways:

QJ No arguments: []

i=>0 One argument: [x]
(+ 1) Q—J g
=> 1
’ T ts:
+ 1 2) wo arguments: [x y]
;=> 3 Two or more arguments:
(+ 1 2 3) [
s 6 Xy & more]

(+12345678) Two or more arguments:
i=> 36 [x y & more]

214

Coding at the REPL 21

The & symbol in a function argument specification means “and any number of
optional arguments.” Functions like this are called variadic functions. You’ll learn
more about using and defining variadic functions in chapter 3.

FIND-DOC

The find-doc function accepts a string, which can be a regular expression (regex)
pattern. It then finds the documentation for all functions or macros the names or
associated documentation of which match the supplied pattern. Although doc is use-
ful for when you know the name of the function or macro you want to look up, find-
doc is useful if you aren’t sure of the name. Here’s an example:

user> (find-doc "lazy")

clojure.core/concat
([1 [x] [x y] [xy & zs])
Returns a lazy seq representing the concatenation of...

clojure.core/cycle

([colll)
Returns a lazy (infinite!) sequence of repetitions of...
. more results

These two forms, doc and find-doc, are quite useful at the REPL when you want to
quickly look up what a function does or you want to find the right options. You may
see a lot of functions and documentation you don’t understand yet, but rest assured
we’ll cover it all eventually.

APROPOS

A related function is apropos, which works very similarly to £ind-doc but prints only
the names of the functions that match the search pattern. Here’s an example:

user=> (apropos 'doc)

(find-doc doc *remote-javadocs* javadoc add-remote-javadoc add-local-javadoc
local-javadocs)

A few more points on Clojure syntax

In chapter 1, we discussed the unique, parentheses-heavy syntax that Clojure employs.
We examined why it exists and what it makes possible. Before we start examining the
various constructs of the Clojure language, let’s cover a few more key points about
Clojure syntax:

» Prefix notation
= Whitespace and comments
= (Case sensitivity

PREFIX NOTATION

Clojure code uses prefix notation (also called polish notation) to represent function calls.
For those who are new to Lisp, this definitely takes a little getting used to, especially
when it comes to using math functions such +, /, *, and the like. Instead of writing 1 + 2,

22

CHAPTER 2 Clojure elements: Data structures and functions

Clojure represents this evaluation as (+ 1 2). Prefix notation is less familiar than the
mathematical form we all learned at school.

Regular functions, on the other hand, don’t have this problem. In a language such
as Ruby, you’d call an add function as follows:

add (1, 2)

If you look closely, this is also prefix notation because the name of the function appears
first, followed by arguments. The advantage of prefix notation for functions is that the
function always appears as the first symbol, and everything else that follows can be
treated as arguments to it. The Clojure version moves the parentheses (and drops the
unnecessary comma, because whitespace is sufficient to delimit the arguments):

(add 1 2)

In most languages, mathematical functions like addition and subtraction are special
cases built into the language as operators to make it possible to represent math in the
more familiar in-fix notation. Clojure avoids this special case by not having any opera-
tors at all. Instead, math operators are just Clojure functions. All functions work the
same way, whether they’re math related or not.

By avoiding special cases and relying on the same prefix notation for all functions,
Clojure maintains its regularity and gives you all the advantages that come from having
no syntax. We discussed this aspect of the language in some detail in chapter 1. The
main advantage we talked about was that it makes it easy to generate and manipulate
code. For example, consider the regular way in which Clojure structures the conditional
cond form (you can think of this as a set of if-then-else clauses in other languages):

(def x 1)

;=> #'user/x

(cond
(> x 0) "greater!"
(= x 0) "zero!"
(< x 0) "lesser!")

;=> "greater!"

This is a nested list, and it contains an even number of expressions that appear in
pairs. The first element of each pair is a test expression, and the second is the respec-
tive expression that’s evaluated and returned if the test expression succeeds. Generat-
ing such a simple list is easy, especially when compared to a case statement in a
language like Java.

This is the reason Clojure uses prefix notation, and most programmers new to this
way of calling functions will get used to it in no time. Now, let’s discuss two more
aspects of writing Clojure code: whitespace and comments.

WHITESPACE
As you’ve seen, Clojure uses parentheses (and braces and square brackets) to delimit

fragments of code. Unlike languages such as Ruby and Java, it doesn’t need commas

Coding at the REPL 23

to delimit elements of a list (such as a vector or arguments passed to a function). You
can use commas if you like, because Clojure treats them as whitespace and ignores
them. So the following function calls are all equivalent:

(+ 1 2 3 4 5)
=> 15

(+ 1, 2, 3, 4, 5)
;=> 15

(+ 1,2,3,4,5)

;=> 15

(+ 1,,,,,2,3 4,,5)
1=> 15

Although Clojure ignores commas, it sometimes uses them to make things easier for
the programmer to read. For instance, if you have a hash map like the following

(def a-map {:a 1 :b 2 :c 3})
;=> #'user/a-map

and ask for its value at the REPL, the Clojure printer echoes it with commas:

user> a-map
{:a 1, :c 3, :b 2}

The results are easier to read, especially if you’re looking at a large amount of data. By
the way, if you're wondering why the ordering of the key-value pairs is different, it’s
because hash maps aren’t ordered, and the Clojure printer doesn’t print them in any spe-
cific order. It makes no difference to the actual hash map, just how it looks after being
printed. We’ll talk more about hash maps in this chapter. Now let’s look at comments.

COMMENTS
Like most Lisps, single-line comments in Clojure are denoted using semicolons. To com-
ment out a line of text, put one or more semicolons at the beginning. Here’s an example:

;7 This function does addition.
(defn add [x y]
(+ x y))

HOW MANY SEMICOLONS? As an aside, some folks use the following conven-
tion relating to comment markers. Single semicolons are used when the com-
ment appears after some program text. Double semicolons are used, as shown
previously, to comment out an entire line of text. And finally, triple semico-
lons are used for block comments. These are just conventions, of course, and
you’re free to decide what works for you.

Clojure provides a rather convenient macro that can be used for multiline comments.
The macro is called comment, and here’s an example:

(comment
(defn this-is-not-working [x vyl
(+ x vy)))
;=> nil

24

2.2

221

222

CHAPTER 2 Clojure elements: Data structures and functions

This causes the whole s-expression to be treated as a comment. Specifically, the comment
macro ignores forms passed in and returns nil.
As a final note on syntax, let’s address case sensitivity.

CASE SENSITIVITY
Like the majority of modern programming languages (including Java), Clojure is case
sensitive. This is unlike most Lisps, however, which are usually not case sensitive.

Now that we’ve covered Clojure syntax, you're ready to learn about writing pro-
grams in the language. We’ll begin by surveying the built-in data structures Clojure
makes available and the functions that manipulate them. Then you’ll learn how to fill
those functions with definition and control-flow forms, such as let, if, when, cond,
loop, and others.

Clojure data structures

In this section, we’re going to explore the various built-in data types and data struc-
tures of Clojure. We’ll start with the basic characters and strings, and end with Clo-
jure sequences.

nil, truth, and falsehood
You’ve seen these in action in the last several pages, so let’s run a quick recap. Clo-
jure’s nil is equivalent to null in Java and nil in Ruby. It means “nothing.” Calling a
function on nil may lead to a NullPointerException, although core Clojure func-
tions try to do something reasonable when operating on nil.

Boolean values are simple. Everything other than false and nil is considered
true. There’s an explicit true value, which can be used when needed.

Characters and strings

Clojure characters are Java characters (unsigned 16-bit UTF-16 code points). Clojure
has a reader macro, the backslash, which can be used to denote characters, like \a
or \g. (There are other reader macros; you’ll learn more about reader macros in
section 2.3.4.)

Clojure strings are Java strings. They’re denoted using double quotes (because a
single quote is a reader macro, which as you saw earlier means something else
entirely). For this reason, it’s useful to know the API provided by the Java String class.
Some examples are

(.contains "clojure-in-action" "-")
and
(.endsWith "program.clj" ".clj")

both of which return what you’d expect: true. Note the leading periods in .contains
and .endswWith. This is Clojure syntax for calling a nonstatic Java method, and chapter 5
focuses entirely on Java interop.

223

Clojure data structures 25

Clojure numbers

The basics of Clojure numbers are easy: most of the time the numbers you’ll be using in
Clojure are 64-bit integers (Java primitive longs) or 64-bit floating-point numbers (Java
primitive doubles). When you need a bigger range, you can use big integers (arbitrary-
precision integers) or big decimals (arbitrary-precision decimals).

Clojure also adds another less-common type of number: the ratio. Ratios are created
when two integers are divided such that they can’t be reduced any further. For example,
executing the code (/ 4 9) returns a ratio 4/9. Table 2.1 summarizes Clojure numbers.

Table 2.1 Syntax of Clojure numbers

Type Casting function | Range and implementation Syntax examples | Contagiousness
Integer Long Signed 64 bits (Java 1long) Base 10: 42 O (Lowest)
Base 16: 0x2a
0x2A 0X2a (case
of letters never
matters)
Base 8: 052 (lead-
ing zero)
Any base from 2 to
36:2r101010
10r42 36rl6
Negative numbers:
-42 -0x2a -052
-36rl6
Big integer | bigint Infinite (like a Java Base 10: 42N 1
BigInteger, butactuallya | Base 16: 0x2aN
clojure.lang.BigInt) | Base 8: 052N
Note: XrX syntax
of normal integers
isn’t supported!
Ratio rationalize | Infinite: big integer numera- 1/3 -2/4 2
tor and denominator
Big decimal | bigdec Exact decimal number of 2.78M278e-2M | 3
arbitrary magnitude, good for | +0.278E1M
financial calculations (Java
BigDecimal)
Floating double IEEE-794 double-precision 2.78 278e-2 4 (Highest)
point floating point (Java double) | +0.278E1

When different number types are mixed together in the same arithmetic operations,
the number type with the highest “contagiousness” will “infect” the result with its type.
Here’s an illustration of this principle:

(+ 1 1N)
;=> 2N

26

2.24

CHAPTER 2 Clojure elements: Data structures and functions

(+ 1 1IN 1/2)

;=> 5/2

(+ 1 1N 1/2 0.5M)

i=> 3.0M

(+ 1 1IN 1/2 0.5M 0.5)
;=> 3.5

There’s one more subtlety of Clojure integers. Sometimes an arithmetic operation on
integers can produce a result too large to represent as a Clojure integer (that is, in
64 bits)—this is called overflow. The only possible arithmetic operations that can over-
flow in Clojure are adding, subtracting, and multiplying integers (dividing integers
produces a ratio if the division is out of range). Normally when an overflow occurs
Clojure throws a java.lang.ArithmeticException. If you'd like Clojure to autopro-
mote the result to a big integer instead, you should use a set of alternative math func-
tions: +', -', *', inc' (increment), and dec' (decrement). Note that these are spelled
like their normal, nonoverflowing counterparts except for a single quote at the end.
Here’s an example:

user> (inc 9223372036854775807)

ArithmeticException integer overflow clojure.lang.Numbers.throwIntOverflow
(Numbers.java:1424)

user> (inc' 9223372036854775807)

;j=> 9223372036854775808N

Symbols and keywords

Symbols are the identifiers in a Clojure program, the names that signify values. For
example, in the form (+ 1 2) the + is a symbol signifying the addition function.
Because Clojure separates reading and evaluating, symbols have two distinct aspects:
their existence in the program data structure after reading and the value that they
resolve to. Symbols by themselves are just names with an optional namespace, but when
an expression is evaluated they’re replaced with the value they signify.

It’s easy to have an intuitive sense of what a valid symbol looks like, but their syntax
is difficult to explain precisely. Basically, a symbol is any run of alphanumeric charac-
ters or the following characters: *!_?$%&=<>. But there are a few restrictions. Symbols
can’t start with a number; if they start with -, +, or ., they can’t have a number as the
second character (so they aren’t confused with number literals); and they can option-
ally have a single / in the middle (and nowhere else!) to separate the namespace and
name parts.

Here are some representative examples of valid symbols: foo, foo/bar, ->Bar,
-foo, foo?, foo-bar, and foo+bar. And here are some invalid attempts at symbols: /bar,
/foo, and +1foo.

In a program, symbols normally resolve to something else that isn’t a symbol. But
it’s possible to treat a symbol as a value itself and not an identifier by quoting the sym-
bol with a leading single-quote character. The quote tells the reader that the next
form is literal data and not code for it to evaluate later. Notice the difference:

22.5

Clojure data structures 27

arglebarg

CompilerException java.lang.RuntimeException: Unable to resolve symbol:
arglebarg in this context.

'arglebarg

;=> arglebarg

In the first example the symbol arglebarg isn’t bound to anything, so an attempt to
evaluate it throws an error. The second example is evaluating the symbol arglebarg
itself as a value.

Essentially what’s happening when you quote a symbol is you’re treating the sym-
bol as data and not code. In practice you’ll almost never quote symbols to use them as
data because Clojure has a special type specifically for this use case: the keyword. A key-
word is sort of like an autoquoted symbol: keywords never reference some other value
and always evaluate to themselves. Keyword syntax is almost like symbol syntax, except
keywords always begin with a colon. Here are some examples of keywords: : foo, : foo/
bar, :->foo, and :+. You’ll end up using keywords very often in your Clojure code, typ-
ically as keys in hash maps and as enumerated values.

You can construct keywords and symbols from strings using the keyword and symbol
functions, which take a string of the name and optionally a string of the namespace.
Likewise, you can examine keywords and functions using the name and namespace func-
tions. For example:

(keyword "foo")

;=> :foo

(symbol "foo" "bar")
;=> foo/bar

(name :foo/bar) No namespace

part returns nil.

’. => Ilbar n

(namespace :foo)

;=> nil name returns
(name "baz") strings unchanged.
i=> "baz"

We’ve discussed all the scalar Clojure types. Let’s now talk about some Clojure collections.

Lists

Lists are the basic collection data structure in Clojure. If you’re familiar with lists from
other languages, Clojure lists are singly linked lists, meaning that it’s easy to go from
the first to the last element of a list but impossible to go backward from the last to the
first element. This means that you can only add or remove items from the “front” of
the list. But this also means that multiple different lists can share the same “tails.” This
makes lists the simplest possible immutable data structure.

Use the 1ist function to create a list and the 1ist? function to test for list types:

(list 1 2 3 4 5)
;=> (1 2 3 4 5)
(list? *1)

;j=> true

28

CHAPTER 2 Clojure elements: Data structures and functions

Use the conj function to create a new list with another value added to it:

(conj (list 1 2 3 4 5) 6)
j=> (6 1 2 3 4 5)

The conj function is the generic “add an item to a collection” function in Clojure. It
always adds an item to a collection in the fastest way possible for that collection. So on
lists conj adds to the beginning, as you saw, but with other collections it may add to
the end or even (for unordered collections) nowhere in particular. You’ll see more of
conj when we look at the other collection types.

conj can take multiple arguments; it will add each argument to the list in the order
in which it is supplied. Note that this means it will appear in the new list in the reverse
order, because lists can grow only from the front:

(conj (list 1 2 3) 4 5 6)

;=> (6 54 12 3) Samgas
(conj (conj (conj (list 1 2 3) 4) 5) 6) previous
;=> (6 54 1 2 3)

You can treat a list like a stack, too. Use peek to return the head of the list and pop to
return the tail:

(peek (list 1 2 3))
;=> 1

(pop (list 1 2 3)) |'.|eaf|ofanempty

listis nil.
i=> (2 3)
(peek (list)) .]
;=> nil Tail of an empty list
(pop (list)) is an exception.

IllegalStateException Can't pop empty list
clojure.lang.PersistentList$EmptyList.pop (PersistentList.java:183)

Finally, you can count the number of items in a list in constant time using the
count function:

(count (list))

;=> 0

(count (list 1 2 3 4))
;=>4

LISTS ARE SPECIAL

As you learned earlier, Clojure code is represented using Clojure data structures. The
list is special because each expression of Clojure code is a list. The list may contain
other data structures such as vectors, but the list is the primary one.

In practice, this implies that lists are treated differently. Clojure assumes that the
first symbol appearing in a list represents the name of a function (or a macro). The
remaining expressions in the list are considered arguments to the function. Here’s
an example:

(+ 1 2 3)

2.2.6

Clojure data structures 29

This list contains the symbol for plus (which evaluates to the addition function), fol-
lowed by symbols for numbers representing one, two, and three. Once the reader
reads and parses this, the list is evaluated by applying the addition function to the
numbers 1, 2, and 3. This evaluates to 6, and this result is returned as the value of
the expression (+ 1 2 3).

This has another implication. What if you wanted to define three-numbers as a list
containing the numbers 1, 2, and 3? You can try that:

(def three-numbers (1 2 3))
; CompilerException java.lang.ClassCastException: java.lang.Long cannot be
cast to clojure.lang.IFn, compiling: (NO_SOURCE_FILE:1)

The reason for this error is that Clojure is trying to treat the list (1 2 3) the same way as
it treats all lists. The first element is considered a function, and here the integer 1 isn’t a
function. What you want here is for Clojure not to treat the list as code. You want to say,
“This list isn’t code, so don’t try to apply normal rules of evaluation to it.” Notice you
had the same problem with the arglebarg symbol earlier, where you wanted to treat the
symbol as data instead of as code. The solution is the same, too—quoting:

(def three-numbers '(1l 2 3))
;=> #'user/three-numbers

In practice you won’t use lists for data very often in your Clojure code unless you're
writing a macro. The same way that Clojure has a special data type for the symbol-as-
data use case (the keyword type), Clojure also has a superpowered counterpart to the
humble list that’s more appropriate for use as data: the vector.

Vectors

Vectors are like lists, except for two things: they’re denoted using square brackets, and
they’re indexed by number. Vectors can be created using the vector function or liter-
ally using the square bracket notation:

(vector 10 20 30 40 50)

;=> [10 20 30 40 50]

(def the-vector [10 20 30 40 50])
;=> #'user/the-vector

Vectors being indexed by numbers means that you have fast random access to the ele-
ments inside a vector. The functions that allow you to get these elements are get and
nth. If the-vector is a vector of several elements, the following is how you’d use
these functions:

(get the-vector 2)
1=> 30

(nth the-vector 2)
;=> 30

(get the-vector 10)
;=> nil

30

CHAPTER 2 Clojure elements: Data structures and functions

(nth the-vector 10)
IndexOutOfBoundsException clojure.lang.PersistentVector.arrayFor (Persis-
tentVector.java:107)

As shown here, the difference between nth and get is that nth throws an exception
if the value isn’t found, whereas get returns nil. There are also several ways to mod-
ify a vector (that is, return a new one with the change). The most commonly used
one is assoc, which accepts the index at which to associate a new value, along with
the value itself:

You can change

(assoc the-vector 2 25) an existing index.

;=> [10 20 25 40 501 4—‘ You can add

(assoc the-vector 5 60) on to the end.

;=> [10 20 30 40 50 60] qJ You can’t add
(assoc the-vector 6 70) past the end.

IndexOutOfBoundsException clojure.lang.PersistentVector.assocN
(PersistentVector.java:137)

You saw how the conj function works on lists earlier. It also works on vectors. Notice
that the new element ends up at the end of the sequence this time, because that’s the
fastest spot on a vector:

(conj [1 2 3 4 5] 6)
;=> [1 2 3 4 5 6]

peek and pop work, too, and they also look at the end of the vector instead of the begin-
ning like with lists:

(peek [1 2])
i=> 2

(pop [1 21) Peeklng an empty

o> [1] collection always .

’ returns nil. Popping an empty
(peek [1) collection always
i=> nil throws an exception.
(pop [1)

IllegalStateException Can't pop empty vector
clojure.lang.PersistentVector.pop (PersistentVector.java:381)

Vectors have another interesting property: they’re functions that take a single argu-
ment. The argument is assumed to be an index, and when the vector is called with
a number, the value associated with that index is looked up inside itself. Here’s
an example:

(the-vector 3)
;=> 40

The advantage of this is that vectors can be used where functions are expected. This
helps a lot when using functional composition to create higher-level functions. We’ll
revisit this aspect of vectors in the next chapter.

227

Clojure data structures 31

Maps

Maps are similar to associative arrays or dictionaries in languages like Python, Ruby,
and Perl. A map is a sequence of key-value pairs. The keys can be pretty much any
kind of object, and a value can be looked up inside a map with its key. Maps are
denoted using braces. Here’s an example of a map using keywords as keys, which, as it
turns out, is a common pattern:

(def the-map {:a 1 :b 2 :c 3})
;=> #'user/the-map

Maps can also be constructed using the hash-map function:?

(hash-map :a 1 :b 2 :c 3)
;j=> {:a 1, :c 3, :b 2}

Here, the-map is a sequence of key-value pairs. The keys are :a, :b, and :c. The values
are 1, 2, and 3. Each key-value pair appears in sequence, establishing which value asso-
ciates with which key. The values can be looked up like this:

(the-map :b)
;=> 2

The reason this is valid Clojure code is because a Clojure map is also a function. It
accepts a key as its parameter, which is used to look up the associated value inside
itself. Clojure keywords (like :a and :b) are also functions: they accept an associa-
tive collection, such as a map or vector, and look themselves up in the collection,
for example:

(:b the-map)

i=> 2 Keywords can also
(:z the-map 26) % return a default
;=> 26 value if not found.

The advantage of both maps and keywords being functions is that it makes function
composition more flexible. Both these kinds of objects can be used where functions
are needed, resulting in less and clearer code.

Like all Clojure data structures, maps are also immutable. There are several func-
tions that can modify a map, and assoc and dissoc are the ones commonly used.

2 Map literals and the hash-map function aren’t exactly equivalent, because Clojure actually has two different map
implementations: hash-map and array-map. Array maps store keys and values in sorted order and perform look-
ups by scanning instead of hashing. This is faster for small maps, so smaller map literals (approximately 10 keys or
less) actually become an array map instead of a hash map. If you assoc too many keys to an array map, you’ll even-
tually get a hash map instead. (The opposite is not true, however: a hash map will never return an array map if it gets
too small.) Transparently replacing the implementation of a data structure is a common performance trick in Clo-
jure made possible by the use of immutable data structures and pure functions. The hash-map and array-map
functions will always return the corresponding structure, regardless of the number of arguments you call them with.

32

CHAPTER 2 Clojure elements: Data structures and functions

Here’s an example of inserting a new key value into a map (except that Clojure returns
anew map):

(def updated-map (assoc the-map :d 4))
;=> #'user/updated-map

updated-map

;=> {:d 4, :a 1, :b 2, :c 3}

(dissoc updated-map :a)

;j=> {:b 2, :c 3, :4 4}

Before wrapping up this section, let’s look at some rather convenient functions that
can make working with maps easy. First, let’s look at what you want to accomplish.
Imagine you had an empty map, and you wanted to store user details in it. With one
entry, the map might look like this:

(def users {:kyle {
:date-joined "2009-01-01"
:summary {
:average {
:monthly 1000
:yearly 12000}}}})

Note the use of nested maps. Because maps are immutable, if you wanted to update
Kyle’s summary for his monthly average, you couldn’t simply drill down to the spot on
the map and update it in place as you would in most other languages. Instead, you
would need to go down to the place you want to change, create the changed map, and
assoc the changes into the intermediate maps on your way back up to the root. Doing
this all the time would be tedious and error prone.

Fortunately, Clojure provides three functions that make updating nested collec-
tions easy. The first one is called assoc-in, and here it is in action:

(assoc-in users [:kyle :summary :average :monthly] 3000)
;=> {:kyle {:date-joined "2009-01-01", :summary {:average {:monthly 3000,
:yearly 12000}}}}

This is helpful, because you don’t have to write a new function to set a new value
rather deep in the user’s map. The general form of assoc-in is

(assoc-in map [key & more-keys] value)

If any nested map doesn’t exist along the way, it gets created and correctly associated.
The next convenience function reads values out of such nested maps. This func-
tion is called get-in:

(get-in users [:kyle :summary :average :monthlyl])
;=> 1000

228

Clojure data structures 33

The final function that’s relevant to this discussion is called update-in, which can be
used to update values in such nested maps. To see it in action, imagine you wanted to
increase Kyle’s monthly average by 500:

(update-in users [:kyle :summary :average :monthly] + 500)
;j=> {:kyle {:date-joined "2009-01-01", :summary {:average {:monthly 1500,
:yearly 12000}}}}

The general form of update-in is
(update-in map [key & more-keys] update-function & args)

This works similarly to assoc-in, in that the keys are used to find what to update with
a new value. Instead of supplying the new value itself, you supply a function that
accepts the old value as the first argument (and any other arguments that you can sup-
ply as well). The function is applied to these arguments, and the result becomes the
new value. The + function here does that job—it takes the old monthly average value
of 1000 and adds it to the supplied argument of 500.

Many Clojure programs use the map as a core data structure. Often, programmers
used to objects in the stateful (data) sense of the word use maps in their place. This is
a natural choice and works well.

Sequences

A sequence isn’t a collection type. Rather, a sequence is an interface (called ISeq) that
exposes a “one thing followed by more things” abstraction. This interface is imple-
mented pervasively by Clojure’s data structures, functions, and macros. The sequence
abstraction allows all data structures to look and act like lists, even if the underlying
values are some other collection type (such as a vector or hash map) or are even cre-
ated lazily as they’re needed.

The ISeq interface provides three functions: first, rest, and cons. Here’s how
first and rest work:

(first (list 1 2 3))

;j=>1

(rest (list 1 2 3))

i=> (2 3)

(first [1 2 3])

i=>1

(rest [1 2 31)

;=> (2 3) Order of items
(first {:a 1 :b 2}) isn’t guaranteed.
;=> [:b 2]

(rest {:a 1 :b 2})

i=> ([:a 1]) Empty collections
(first [1) return nil for first.

;=> nil

(rest [1) Empty collections return an
i=> 0 empty sequence for rest.

34

2.3

23.1

CHAPTER 2 Clojure elements: Data structures and functions

first returns the first element of the sequence like peek does for lists but the same
way on all collection types. rest returns the sequences without the first element just
like pop does on lists but the same way on all collection types and without throwing an
exception for empty things.

cons (short for construct) creates new sequences given an element and an existing
sequence:

(cons 1 [2 3 4 5])
;=> (1L 2 3 4 5)

cons adds an item to the beginning of a sequence (even on vectors) and the original
sequence is the “tail” of the new sequence. Notice that this is exactly how conj would
work on a list: the sequence abstraction cons uses allows it to act as though all sequen-
tial structures it touches are listlike.

Note that the sequence abstraction is usually lazy, meaning that functions like
first, rest, and cons don’t do extra work to create lists, even though the result prints
like a list (that is, surrounded by parentheses). Observe:

(list? (cons 1 (list 2 3)))
;=> false

The sequence abstraction allows everything to seem as though real lists were being
manipulated but avoids actually creating any new data structures (such as actual lists)
or doing any unnecessary work (such as creating items farther down the sequence that
are never used).

Now that you have a solid foundation in the data structures of Clojure, it’s time to
write some programs that use them.

Program structure

In this section, we’ll examine several constructs that are part of the Clojure language.
Most of those that we discuss here are categorized as structural forms because they
lend structure to the code; they set up local names, allow for looping and recursion,
and the like. We’ll begin with the most fundamental aspect of structuring Clojure
code, namely the function.

Functions
Clojure is a functional language, which means that functions are first-class citizens of
the language. For something to be first class, the language should allow them to

= Be created dynamically

= Be passed as arguments to functions

= Be returned from other functions

= Be stored as values inside other data structures

Clojure functions comply with all of these requirements.

Program structure 35

If you’re used to programming in a language like C++ or Java, this will be a differ-
ent experience. To start, let’s see how to define Clojure functions.

FUNCTION DEFINITION
Clojure offers the convenient defn macro, which allows traditional-looking function

definitions, such as the following:

(defn addition-function [x y]
(+ x vy))

In reality, the defn macro expands to a combination of calls to def and fn, where fn is
itself another macro and def is a special form. Here, def creates a var with the speci-
fied name and is bound to a new function object. This function has a body as specified
in the defn form. Here’s what the equivalent expanded form looks like:

(def addition-function

(fn [x vyl
(+ x y)))

The fn macro accepts a sequence of arguments in square brackets, followed by the body
of the function. The £n form can be used directly to define anonymous functions. The def
form shown here assigns the function created using fn to the var addition-function.

VARIABLE ARITY
To define functions of variable arity, parameter lists can use the & symbol. An example
is the addition function from Clojure core, where the parameters are defined as

[x v & more]

This allows + to handle any number of arguments. Functions are explained in more
detail in chapter 3. Now you’ll learn about a form that helps in structuring the innards
of functions themselves.

2.3.2 The let form
Consider the following function that calculates the average number of pets owned by
the previously declared users:

(defn average-pets []
(/ (apply + (map :number-pets (vals users))) (count users)))

Don’t worry yet about all that’s going on here. Observe that the body of the function is
quite a long, complex-looking line of code. Such code can take several seconds to
read. It would be nice if you could break it down into pieces, to make the intent of the
code clearer. The let form allows you to introduce locally named things into your
code by binding a symbol to a value. Consider the following alternate implementation:

(defn average-pets []

(let [user-data (vals users) apply calls a function with items of
pet-counts (map :number-pets user-data) a sequence as individual arguments;
total (apply + pet-counts)] for example, (apply + [1 2]1) is

(/ total (count users)))) the same as (+ 1 2).

36

CHAPTER 2 Clojure elements: Data structures and functions

Here, user-data, pet-counts, and total are namespace-less symbols that resolve to
specific values but only in the scope of the let. Unlike vars created by def, these bind-
ings can’t be changed, only shadowed by other bindings in nested scopes. Now the
computation is much clearer, and it’s easy to read and maintain this code. Although
this is a trivial example, you can imagine more complex use cases. Further, the let
form can be used to name things that might be needed more than once in a piece of
code. Indeed, you can introduce a local value computed from previously named val-
ues, within the same form, for instance:

(let [x 1
y 2
z (+ x y)]
z)
;=> 3

More specifically, the let form accepts as its first argument a vector containing an
even number of forms, followed by zero or more forms that get evaluated when the
let is evaluated. The value of the last expression is returned.

UNDERSCORE IDENTIFIER
Before moving on, it’s worth discussing the situation where you might not care about
the return value of an expression. Typically, such an expression is called purely for its
side effect. A trivial example is calling println, because you don’t care that it returns
nil. If you do this inside a let form for any reason, you’ll need to specify an identifier
in which to hold the return value. The code might look like this:
(defn average-pets []
(let [user-data (vals users)
pet-counts (map :number-pets user-data)
value-from-println (println "total pets:" pet-counts)

total (apply + pet-counts)]
(/ total (count users))))

In this code, the only reason you create value-from-println is that the let form
needs a name to bind the value of each expression. In such cases where you don’t care
about the value, you can just use a single underscore as the identifier name. Take a
look at the following:

(defn average-pets []

(let [user-data (vals users)
pet-counts (map :number-pets user-data)
(println "total pets:" pet-counts)

total (apply + pet-counts)]
(/ total (count users))))

The underscore identifier can be used in any situation where you don’t care about the
value of something. There’s nothing special about the underscore symbol: this is
merely a Clojure convention to signal that the programmer doesn’t care about the
symbol’s value and isn’t planning to use it later, but syntax requires the programmer
to provide a binding symbol.

233

Program structure 37

Although this example works for debugging, it isn’t particularly widespread in pro-
duction code. The underscore identifier will be even more useful when we explore
Clojure’s destructuring support in the next chapter.

We’ve covered the basics of the let form. We’re going to explore immutability and
mutation a lot more, starting in chapter 3. For now, let’s continue with learning about
the do form.

Side effects with do

In a pure functional language, programs are free of side effects. The only way to “do
something” is for a function to compute a value and return it. Calling a function
doesn’t alter the state of the world in any way. Consider the following code snippet:
(defn do-many-things []

(do-first-thing)

(do-another-thing)

(return-final-value))

In a world without state and side effects, the do-many-things function would be
equivalent to this one:

(defn do-many-things-equivalent []
(return-final-value))

The calls to do-first-thing and do-another-thing can be eliminated without
change in behavior, even without knowing what they do. This is because in a stateless
world without side effects, the only thing that “does something” in do-many-things is
the last function call to return-final-value, which presumably computes and returns
a value. In such a world, there’d be no reason to ever call a series of functions (as
shown in the first example), because only the last one would ever do anything useful.

The real world is full of state, and side effects are a necessity. For example, printing
something to the console or to a log file is a side effect that changes the state of the
world. Storing something in a database alters the state of the world and is another
example of a side effect.

To combine multiple s-expressions into a single form, Clojure provides the do
form. It can be used for any situation as described previously where some side effect is
desired and the higher-order form accepts only a single s-expression. As an example,
consider the if block:

(if (is-something-true?)
(do
(log-message "in true branch")

(store-something-in-db)
(return-useful-value)))

Normally, because the consequent part of the if form accepts only a single s-expression,
without the do as shown here, it would be impossible to get the true case to call all three
functions (log-message, store-something-in-db, and return-useful-value).

38

234

CHAPTER 2 Clojure elements: Data structures and functions

The do form is a convenient way to combine multiple s-expressions into one. This
is a common idiom in macros, and plenty of core Clojure forms are macros that
accept multiple forms as parameters and combine them into one using an implicit do.
Examples are fn, let, doseq, loop, try, when, binding, dosync, and locking.

Now that you know how to create blocks of code using do, we’ll move on to learn-
ing about other structural constructs in the remainder of this section. First, though,
let’s look at exception handling in Clojure.

Reader macros

The Clojure reader converts program text into Clojure data structures. It does this by
recognizing that characters such as parentheses, braces, and the like are special and
that they form the beginning (and ending) of lists, hash maps, and vectors. These rules
are built into the reader.

Other characters are special also, because they signal to the reader that the form
that follows them should be treated in a special way. In a sense, these characters extend
the capability of the reader, and they’re called reader macros. The simplest (and most
traditional) example of a reader macro is the comment character (;). When the
reader encounters a semicolon, it treats the rest of that line of code as a comment and
ignores it. Table 2.2 shows the available reader macros in Clojure.

Table 2.2 Clojure’s reader macros and their descriptions

Reader macro character Description of reader macro
Quote (') Quotes the form following it, same as (quote)
Character (\) Yields a character literal
Comment (;) Single-line comment
Meta () Associates metadata for the form that follows
Deref (@) Dereferences the agent or ref that follows
Dispatch (#) #{} Constructs a set

#"" Constructs a regex pattern

#” Associates metadata for the form that follows (deprecated by *)
#' Resolves the var for the symbol that follows, same as (var)

() Constructs an anonymous function

#_ Skips the following form

Syntax quote () Used in macros to render s-expressions
Unquote (~) Unquotes forms inside syntax-quoted forms
Unquote splice (~@) Unquotes a list inside a syntax form, but inserts the elements of the list

without the surrounding parentheses

24

24.1

Program flow 39

You don’t have to understand all of these now: you’ll learn about each of these reader
macros in the relevant section in the book. For instance, we’ll use the last three quite
heavily in chapter 7, which examines macros.

Reader macros are implemented as entries in a read table. An entry in this table is
essentially a reader macro character associated with the macro function that describes
how the form that follows is to be treated. Most Lisps expose this read table to the pro-
grammers, allowing them to manipulate it or add new reader macros. Clojure doesn’t
do this, and so you can’t define your own reader macros. Starting with Clojure 1.4,
Clojure does let you define your own data literals, something that we’ll examine in the
next chapter.

In this section, you saw various structural constructs provided by Clojure. In the
next section, you’ll see forms that control the execution flow of Clojure programs.

Program flow

Like most other languages, the basics of Clojure are simple to learn, with few special
forms and indeed few constructs that control the flow of execution. In this section,
we’ll begin with conditional program execution, with the if special form and other
macros built on top of the if form, and then we’ll look at various functional con-
structs that allow for looping and working on sequences of data. Specifically, we’ll con-
sider loop/recur, followed by a few macros that use loop/recur internally to make it
convenient to process sequences. We’ll close this chapter with a few higher-order func-
tions that apply other functions to sequences of data.

Conditionals

A conditional form is one that causes Clojure to either execute or not execute associ-
ated code. In this section, we’ll examine if, if-not, cond, when, and when-not. We’ll
also briefly look at logical functions.

IF
The most basic example of this is the if form. In Clojure, the general form of if looks
like this:

(if test consequent alternative)

This shows that the if form accepts a test expression, which is evaluated to determine
what to do next. If the test is true, the consequent is evaluated. If the test is false, and if
an alternative form is provided, then it is evaluated instead (otherwise nil is returned).
Because the consequent and alternative clauses of the if form can only be a single
s-expression, you can use the do form to have it do multiple things. Here’s an example:

(if (> 5 2)
"yes“
"HO")

;=> “yes“

40

CHAPTER 2 Clojure elements: Data structures and functions

if is a special form, which means that the Clojure language implements it internally
as a special case. In a language that provides the if special form and a macro system,
all other conditional forms can be implemented as macros, which is what Clojure
does. Let’s visit a few such macros.

IF-NOT
The if-not macro does the inverse of what the if special form does. The general

structure of this macro is
(if-not test consequent alternative)

Here, if the test is false, the consequent is evaluated; else if it’s true and the alternative
is provided, it’s evaluated instead. Here’s a quick example:

(if-not (> 5 2) "yes" "no")
;=> "no"

COND
cond allows you to flatten nested trees of if conditions. The general form looks like

the following:

(cond & clauses)

Here’s a simple example of using cond:

(def x 1)

;=> #'user/x

(cond
(> x 0) "greater!"
(= x 0) "zero!"

:default "lesser!")
;j=> "greater!"

As you can see, the clauses are pairs of expressions, each of the form test consequent.
Each test expression is evaluated in sequence, and when one returns true (actually
anything other than false ornil), the associated consequent is evaluated and returned.
If none returns a truthy value, you can pass in something that works as a true value
(for example, the keyword :default), and the associated consequent is evaluated and
returned instead.

WHEN
Here’s the general form of the when macro:

(when test & body)

This convenient macro is an if (without the alternative clause), along with an implicit
do. This allows multiple s-expressions to be passed in as the body. Here’s how it might
be used:

(when (> 5 2)
(println "five")
(println "is")
(println "greater")
"done")

24.2

Program flow 41

five

is
greater
;j=> "done"

Note that there’s no need to wrap the three functions in the body inside a do, because
the when macro takes care of this. You’ll find this a common pattern, and it’s a conve-
nience that most macros provide to their callers.

WHEN-NOT
when-not is the opposite of when, in that it evaluates its body if the test returns false
or nil. The general form looks similar to that of when:

(when-not test & body)

Here’s an example:

(when-not (< 5 2)
(println "two")
(println m"is")
(println "smaller")
"done")

two

is

smaller

;j=> "done"

These are some of the many forms that allow programs to handle different kinds of
conditional situations. Except for the if special form, they’re all implemented as mac-
ros, which also implies that the programmer is free to implement new ones, suited to
the domain of the program. In the next section, you'll see a little more detail about
writing test expressions using logical functions.

Logical functions

Any expression that returns a truthy or falsey value can be used for the test expression
in all the previously mentioned conditional forms. To write compound test expres-
sions, Clojure provides some logical operators. Let’s examine the logical and first.

and accepts zero or more forms. It evaluates each in turn, and if any returns nil or
false, and returns that value. If none of the forms return false or nil, then and
returns the value of the last form. and short-circuits the arguments by not evaluating
the remaining if any one returns a falsey value. A simple rule to remember the return
value of and is that it returns the “deciding” value, which is the last value it had to
examine, or true if there are no values. Here are some examples:
(and)
i=> true
(and :a :b :c)
;1=> :C
(and :a nil :c)
ij=> nil

42

CHAPTER 2 Clojure elements: Data structures and functions

(and :a false :c)
;=> false
(and 0 nn)

j=> mn

Remember, in Clojure onlynil
and false are logically false;
everything else is true.

or works in the opposite way. It also accepts zero or more forms and evaluates them
one by one. If any returns a logical true, it returns it as the value of the or. If none
return a logical true, then or returns the last value. or also short-circuits its argu-
ments. Here are some examples:

(or)

;=> nil
(or :a :b :c)

(or nil false)
;=> false

(or false nil)
=> nil

Another point of interest is that both and and or are also macros. This means that
they’re not built into the Clojure language but come as part of the core library. It also
means that you can write your own macros that behave like and or or and they would
be indistinguishable from the language. We’ll explore this more in chapter 7.

Finally, Clojure provides a not function that inverts the logical value of whatever is
passed in as an argument. It always returns the exact values true or false. Here are
some examples:

(not true)
;i=> false
(not 1)

;=> false

(not nil)
;j=> true

As a relevant side note, Clojure provides all the usual comparison and equality func-
tions. Examples are <, <=, >, >=, and =. They all work the way you’d expect them to,
with an additional feature: they take any number of arguments. The < function, for
instance, checks to see if the arguments are in increasing order. Here are a couple
quick examples:

(< 2 46 8)
j=> true

(<« 2 4 3 8)
;=> false

The = function is the same as Java’s equals, but it works for a wider range of objects
including nil, numbers, and sequences. Note that it’s a single = symbol and not ==,
which is commonly used in many programming languages.

Program flow 43

= (SINGLE-EQUALS) VS. == (DOUBLE-EQUALS)

But Clojure does also have a == (double-equals) function that can only compare num-
bers. The difference between = and == is very subtle. = can compare any two Clojure
values but gives unintuitive results when comparing numbers among the three differ-
ent categories of numbers: integer (including ratio), big decimal, and floating point.
Here are some examples:

(= 1 1N 1/1)
;=> true
(= 0.5 1/2)
;=> false
(= 0.5M 0.5)
;=> false
(= 0.5M 1/2)
;=> false

You're probably scratching your head at those false values! If you're comparing num-
bers from different classes, you can use == instead, but all arguments must be numbers:

(== 1 1IN 1/1) Lo
;=> true Numbet:s in different

(== 1/2 0.5M 0.5) :3Eegh(:r|;s now c::lmpare

;=> true ghly how you’d expect.

1.9999999999999999

;2> 2.0 But.== isn’t.a mag?c wand. .

(== 2.0M 1.9999999999999999) agéclllnstflz_atlnﬁ-[;'mqt precision Al

;m> true and rounding behavior. arguments
(== :a 1) must be
ClassCastException clojure.lang.Keyword cannot be cast to numbers or
java.lang.Number clojure.lang.Numbers.equiv (Numbers.java:206) Clojure will
(== nil 1) throw an
NullPointerException clojure.lang.Numbers.ops (Numbers.java:961) exception.

A simple rule of thumb: if you know that everything you’re comparing is a number and
you expect different categories of numbers, use ==; otherwise, use =.”

These logical functions are sufficient to create compound logical expressions from
simple ones. Our next stop in this section is iterations—not strictly the kind supported
by imperative languages such as C++ and Java but the functional kind.

* You may be wondering why Clojure has this wart. Clojure (and Java) has a contract stipulating that values that
compare equal have the same hash code. This makes it possible to do extremely fast hash-based equality
checks even when comparing large collections against one another. But it’s difficult to write a fast hash func-
tion that would produce the same value for different number categories. Further, even if they could hash the
same, numbers in different categories aren’t complete replacements for one another because they have dif-
ferent precision, range, and arithmetic behavior. It would lead to surprising results if a floating-point number
were used in place of a big decimal or a ratio. If you want a deeper dive into issues surrounding Clojure’s
notion of equality, read the document Equality by Andy Fingerhut at https://github.com/jafingerhut/thalia/
blob/master/doc/other-topics/equality.md.

https://github.com/jafingerhut/thalia/blob/master/doc/other-topics/equality.md
https://github.com/jafingerhut/thalia/blob/master/doc/other-topics/equality.md

44 CHAPTER 2 Clojure elements: Data structures and functions

2.4.3 Functional iteration

Most functional languages don’t have traditional iteration constructs like for because
typical implementations of for require mutation of the loop counter. Instead, they
use recursion and function application to process lists of things. We’ll start this section
by looking at the familiar while form, followed by examining Clojure’s loop/recur
looping construct. Then we’ll examine a few convenient macros such as doseq and
dotimes, which are built on top of loop/recur.

WHILE
Clojure’s while macro works in a similar fashion to those seen in imperative lan-
guages such as Ruby and Java. The general form is as follows:

(while test & body)

Consider the case where you have a function request-on-queue? that checks to see if
a message has arrived on a messaging system you’re using and another function pop-
request-queue that retrieves such a message. The following shows a way to set up the
request-handling loop:

(while (request-on-queue?)
(handle-request (pop-request-queue)))

Here, requests will continue to be processed as long as they keep appearing on the
request queue. The while loop will end if request-on-queue? returns a value either
false or nil, presumably because something else happened elsewhere in the system.
Note that the only way for a while loop to end is for a side effect to cause the test
expression to return a logically false value (thatis, either false ornil).

Now, let’s move on to another looping construct—one that’s somewhat different
from imperative languages, because it relies on what appears to be recursion.

LOOP/RECUR

Clojure doesn’t have traditional for loops for iteration; instead, programs can achieve
similar behavior through the use of higher-level functions such as map and other func-
tions in the sequence library. The Clojure version of iterative flow control is loop and
the associated recur. Here’s an example of calculating the factorial of a number n
using loop/recur:

But if current isn’t 1,

(defn fact-loop [n] Return whatever value ¢ the | ith
(loop [current n fact 1] fact ends up having repeat the °°F;‘t”|
(if (= current 1) when current is 1 current reset to current
Fact minus 1 and with fact set
(recur (dec current) (* fact current))))) to current times fact

Here’s the general form of the loop:

(loop bindings & body)

Program flow 45

loop sets up bindings that work exactly like the let form does. In this example, [current
n fact 1] works the same way if used with a let form: current gets bound to the value
of n, and fact gets bound to a value of 1. Then it executes the supplied body inside
the lexical scope of the bindings. In this case, the body is the if form.

Now let’s talk about recur. It has similar semantics as the let form bindings:

(recur bindings)

The bindings are computed, and each value is bound to the respective name as
described in the loop form. Execution then returns to the start of the loop body. In
this example, recur has two binding values, (dec current) and (* fact current),
which are computed and rebound to current and fact. The if form then executes
again. This continues until the if condition causes the looping to end by not calling
recur anymore.

recur is a special form in Clojure, and despite looking recursive, it doesn’t con-
sume the stack. It’s the preferred way of doing self-recursion, as opposed to a function
calling itself by name. The reason for this is that Clojure currently doesn’t have tail-
call optimization, though it’s possible that this will be added at some point in the
future if the Java virtual machine (JVM) were to support it. recur can be used only
from tail positions of code, and if an attempt is made to use it from any other position,
the compiler will complain. For instance, this will cause Clojure to complain:

(defn fact-loop-invalid [n]
(loop [current n fact 1]

(if (= current 1) Aangd
Fact position for
(recur (dec current) (* fact current))) recur

(println "Done, current value:" current)))

The specific error you’ll see is

CompilerException java.lang.UnsupportedOperationException: Can only recur
from tail position, compiling: (NO_SOURCE_PATH:5:7)

This will tip you off that you have a recur being used from a nontail position of loop,
and such errors in code are easy to fix.

As you’ve seen, loop/recur is simple to understand and use. recur is more power-
ful and can cause execution to return to any recursion point. Recursion points can be
set up, as you saw in the example, by a 1loop form or by a function form (enabling you
to create self-recursive functions). You’ll see the latter in action in the next chapter. By
the way, another point to note is that by using recur, you’re being explicit about
where you want the recursion to occur in a tail-recursive manner. This improves the
readability of the code.

Now let’s look at a few macros that Clojure provides that make it easy to work with
sequences without having to use loop/recur directly.

46

CHAPTER 2 Clojure elements: Data structures and functions

DOSEQ AND DOTIMES

Imagine that you have a list of users and you wish to generate expense reports for
each user. You could use the looping construct from the previous section, but instead
there’s a convenient way to achieve the same effect in the following dispatch-
reporting-jobs function:

(defn run-report [user]
(println "Running report for" user))

(defn dispatch-reporting-jobs [all-users]
(doseq [user all-users]
(run-report user)))

Here, the form of interest is doseq. The simplest form accepts a vector containing two
terms, where the first term is a new symbol, which will be sequentially bound to each
element in the second term (which must be a sequence). The body will be executed
for each element in the sequence and then the entire form will return nil. In this
case, dispatch-reporting-jobs will call run-reports for each user present in the
sequence all-users.

dotimes is similar. It’s a convenience macro that accepts a vector containing a
symbol and a number n, followed by the body. The symbol is set to numbers from 0
to (n - 1), and the body is evaluated for each number. Here’s an example:

(dotimes [x 5]
(println "X is" x))

This will print the numbers 0 through 4 and return nil.

Despite the convenience of these macros, they’re not used as much as you’d
imagine, especially if you’re coming from an imperative background. In Clojure, the
most common pattern of computing things from lists of data is using higher-level
functions such as map, filter, and reduce. We’ll look at these briefly in the remain-
der of this section.

MAP

Don’t be confused by the name here: map the function is different from “map” the
data structure! The simplest use of map accepts a unary function and a sequence of
data elements. A unary function is a function that accepts only one argument. map
applies this function to each element of the sequence and returns a new sequence
that contains all the returned values, for example:

(map inc [0 1 2 31)
;=> (1 2 3 4)

Even though this is a common way of using map, it’s even more general than this. map
accepts a function that can take any number of arguments, along with the same num-
ber of sequences. It collects the result of applying the function to corresponding

Program flow 47

elements from each sequence. If the sequences are of varying lengths, map works
through the shortest one:

When supplying multiple sequences, each

0123] [0123
(map + [P 1) supplies an additional argument to function.

i=> (0 2 4 6)

(map + [0 1 23] [0 1 2]) Length of return value is
i=> (0 2 4) length of shortest sequence.

In other languages, this would have required much more code: an iteration block, a
list that collects the return values, and a condition that checks to see if the list is
exhausted. A single call to map does all this.

FILTER AND REMOVE

filter does something similar to map—it collects values. But it accepts a predicate
function and a sequence and returns only those elements of the sequence that return
a logically true value when the predicate function is called on them. Here’s an exam-
ple that returns only valid expenses that aren’t zero in value:

(defn non-zero-expenses [expenses]
(let [non-zero? (fn [e] (not (zero? e)))]
(filter non-zero? expenses)))
;=> #'user/non-zero-expenses

(non-zero-expenses [-2 -1 0 1 2 3]) Notice 0 is gone
j=> (-2 -1 1 2 3) from sequence.

remove is the opposite of filter: where filter uses the predicate to decide what to
keep, remove uses it to decide what to drop. You can rewrite the non-zero-expenses
function using remove:

(defn non-zero-expenses [expenses]
(remove zero? expenses))

;=> #'user/non-zero-expenses

(non-zero-expenses [-2 -1 0 1 2 3])

j=> (-2 -1 1 2 3)

Notice that you get same result
using remove but don’t need to
create a non-zero? function.

For several kinds of calculations, you’ll need to operate on only those expenses that
aren’t zero. non-zero-expenses is a function that selects all such values, and it does so
in one line of code (three words!).

REDUCE
The simplest form of reduce is a high-level function that accepts a function of arity
two and a sequence of data elements. The function is applied to the first two elements
of the sequence, producing the first result. The same function is then called again
with this result and the next element of the sequence. This then repeats with the fol-
lowing element, until the last element is processed.

Here you’ll write the factorial function using reduce:
(defn factorial [n]

(let [numbers (range 1 (+ n 1))]
(reduce * numbers)))

48

CHAPTER 2 Clojure elements: Data structures and functions

range is a Clojure function that returns a list of numbers starting from the first argu-
ment (inclusive) to the second argument (exclusive). For instance:

(range 10)
7j=> (0123 4567 809)

This is why numbers is computed by calling range with 1 and (+ n 1). The rest is easy;
you reduce the sequence using the multiply (*) function.
Let’s examine how this works when factorial is called with 5:

(factorial 5)
1=> 120

numbers is set to the result of calling range on 1 and 6, which is the sequence of the
numbers 1, 2, 3, 4, and 5. This sequence is what reduce operates on, along with the mul-
tiplication function. The result of multiplying 1 and 2 (which is 2) is multiplied by 3
(resulting in 6). That’s then multiplied by 4 (resulting in 24), which is finally multi-
plied by 5, resulting in 120.

If you’re ever having trouble visualizing the steps of a reduction, you can replace
the reduce function with the reductions function: reduce returns only the final
reduced value, but reductions returns a sequence of every intermediate value. You’ll
rewrite the factorial function to use reductions:

(defn factorial-steps [n]
(let [numbers (range 1 (+ n 1))]

(reductions * numbers)))

;=> #'user/factorial-steps

(factorial-steps 5)

;=> (1 2 6 24 120)

(factorial 1)

;=> 1

(factorial 2)

;=> 2

(factorial 3)

1=> 6

(factorial 4)

;=> 24

(factorial 5)

;=> 120 #A

(map factorial (range 1 6))

;=> (1 2 6 24 120)

Notice that results of factorial
steps correspond to results of
calling normal factorial with all
values from 1 to 5.

Another practical
illustration of map
and range

reduce is a powerful function, and as shown here, it accomplishes in a single line of
code what might require several lines in other languages.

FOR

What book can be complete without mentioning for in the context of iteration? We
said earlier that few functional languages have a traditional for construct. Clojure
does have for, but it isn’t quite like what you might be used to. In Clojure, for is used

Program flow 49

for list comprehensions, which is a syntactic feature that allows sequences to be con-
structed out of existing ones. The general form of the for construct follows:

(for seg-exprs body-expr)

seqg-exprs is a vector specifying one or more binding-form/collection-expr pairs.
body-expr can use the bindings set up in seg-exprs to construct each element of the
list. Consider the following example that generates a list of labels for each square on
a chessboard:

(def chessboard-labels
(for [alpha "abcdefgh"
num (range 1 9)]
(str alpha num)))

The str function concatenates the string values of the arguments passed to it. Now
chessboard-1labels is a lazy sequence with all 64 labels:

chessboard-1labels
'.=> (Ilal n Ila2 n Ila3 n Ila4 n Ilas n - Ilh6 n Ilh7 n Ilh8 ll)

The for seg-exprs can take modifiers :let, :when, and :while. To see an example of
:when in use, first consider a function that checks to see if a number is prime:

Math/sqrt returns

(defn prime? [x] square root of a

(let [divisors (range 2 (inc (int (Math/sqgrt x)))) number as a double;
remainders (map (fn [d] (rem x d)) divisors)] int is to truncate
(not (some zero? remainders)))) result to an integer.

Although there are more efficient ways to test for a prime number, this implementa-
tion will suffice for this example. By the way, some is a core function that returns the
first logical true value returned when the specified predicate is called with each ele-
ment of the specified collection. We’ll revisit this function shortly. Also, Math/sqrt is
code that calls the sqrt static method on the Math Java class. This is an example of
Clojure’s Java interop, and chapter 5 is dedicated to it.

Now you’ll use for to write a function primes-less-than, which returns a list of all
primes between 2 and the number passed in:

(defn primes-less-than [n]
(for [x (range 2 (inc n))
:when (prime? x)]
x))

Notice how you specify a condition in the for form using the :when option. You can
test this function:

(primes-less-than 50)
j=> (2 3 57 11 13 17 19 23 29 31 37 41 43 47)

50 CHAPTER 2 Clojure elements: Data structures and functions

Let’s look at another, slightly more complex example. You’ll use the prime? function
to find all pairs of numbers under, say, a number like 5, such that the sum of each is
prime. Here it is:

(defn pairs-for-primes [n]
(let [z (range 2 (inc n))]
(for [x z vy z :when (prime? (+ x y))]
(list x y))))

Now test it out:

(pairs-for-primes 5)
;=> ((2 3) (2 5) (3 2) (3 4) (43) (52))

As you can see, Clojure’s for is a powerful construct, and it can be used to create arbi-
trary lists. A great advantage of this feature is that it’s almost declarative. For instance,
the code in pairs-for-primes reads almost like a restatement of the problem itself.

Our next stop isn’t strictly about program flow but about a couple of macros that
are useful in writing other functions and macros.

2.4.4 Threading macros

You’re going to learn a lot about macros in this book, starting with an introduction to
them in chapter 7. From a developer point of view, several macros are extremely use-
ful. You've seen some already, and in this section you’ll see two more, which make
writing code a lot more convenient and result in more readable code as well. They're
called threading macros.

THREAD-FIRST

Imagine that you need to calculate the savings that would be available to a user several
years from now based on some amount the user invests today. You can use the formula
for compound interest to calculate this:

A

final-amount = principle * (1 + rate/100) time-periods

You can write a function to calculate this:

Math/pow returns
(defn final-amount [principle rate time-periods] first argument
(* (Math/pow (+ 1 (/ rate 100)) time-periods) principle)) raised to power of
second argument
as a double.

You can test that it works by calling it at the REPL:

(final-amount 100 20 1)
;=> 120.0
(final-amount 100 20 2)
;=> 144.0

Program flow 51

This is fine, but the function definition is difficult to read, because it’s written inside
out, thanks to the prefix nature of Clojure’s syntax. This is where the thread-first macro
(named ->) helps, as shown in the following code:

(defn final-amount-> [principle rate time-periods]
(-> rate
(/ 100)
(+ 1)
(Math/pow time-periods)
(* principle)))

It works the same, and you can confirm this on the REPL:

(final-amount-> 100 20 1)
;=> 120.0
(final-amount-> 100 20 2)
;=> 144.0

What the thread-first macro does is take the first argument supplied and place it in
the second position of the next expression. It’s called thread-first because it moves
code into the position of the first argument of the following form. It then takes the
entire resulting expression and moves it into the second position of the following
expression, and through all of them, until all expressions are exhausted. So when
the macro expands in the case of the final-amount-> function, the form looks
like this:

(* (Math/pow (+ (/ rate 100) 1) time-periods) principle)

To be more accurate, the call to Java’s Math/pow is also expanded, but we’ll explore
that in chapter 5. For now, it’s enough to see that the expanded form is exactly like
the one we manually defined in final-amount earlier. The advantage is that final-
amount-> is much easier to write and read. This is an example of how a macro can
manipulate code to make it easier to read. Doing something like this is nearly impossi-
ble in most other languages.

In the next section, we’ll examine a related macro, called thread-last.

THREAD-LAST

The thread-last macro (named ->>) is a cousin of the thread-first macro. Instead of
taking the first expression and moving it into the second position of the next expres-
sion, it moves it into the last place. It then repeats the process for all the expressions
provided to it. Examine a version of the factorial function again:

(defn factorial [n]
(reduce * (range 1 (+ 1 n))))

52

CHAPTER 2 Clojure elements: Data structures and functions

This is also written in the inside-out syntax, and it isn’t immediately obvious what the
sequence of operations is. Here’s the same function rewritten using the ->> macro:

(defn factorial->> [n]
(->> n
(+ 1)
(range 1)
(reduce *)))

You can check that it works by testing it at the REPL:

(factorial->> 5)
1=> 120

This macro expands the factorial->> function to
(reduce * (range 1 (+ 1 n)))

This ensures that it works the same way as factorial defined previously. The main
advantage of this macro (similar to the -> macro) is that it lets developers focus on the
sequence of operations, rather than ensuring they’re writing the nested expressions
correctly. It’s also easy to read and maintain the resulting function.

A far more common use of this macro is when working with sequences of data ele-
ments and using higher-order functions such as map, reduce, and filter. Each of
these functions accepts the sequence as the last element, so the thread-last macro is
perfect for the job.

While we’re on the topic of threading macros, Clojure 1.5 introduced two related
ones called some-> and some->>. These two behave exactly the same as the respec-
tive ones we just discussed, but computation ends if the result of any step in the
expansion is nil.

THREAD-AS

Another threading macro introduced in Clojure 1.5 is thread-as (named as->). The
threading macros you’ve seen so far don’t give you any control over the position of the
previous expression: it is either first or last, depending on which threading macro you
use. as-> is more flexible: you supply it a name, and it will bind the result of each suc-
cessive form to that name so you can use it in the next. For example:

First form is bound
to name <>; you

Can be used anywhere
van (123 4]) < can use any name. in next form

{
(<> "am)
(
(

(as->

conj <> 10)
map inc <>))

<>is [1 2 3 4] before this

form executes, and becomes
i=> (2 3 4 5 11) inc increments a [123410] afterward.
number by one.

Program flow 53

This may look like magic, but the macro is actually quite simple. This is what the previ-
ous example expands to:

(let [<> {"a"™ [1 2 3 4]}
<> (<> "a")
<> (conj <> 10)
<> (map inc <>)]
<>)

The as-> macro is really just a more compact way of chaining a series of let bindings
to the same name.

CONDITIONAL THREADING

The final set of threading macros we’ll look at were also introduced in Clojure 1.5:
cond-> and cond->>. These threading macros are exactly like -> and ->>, except each
form is guarded by a conditional (which is not threaded) and can be skipped if the
conditional is false. Here’s an example:

[1is only threaded through the

(let [x 1 y 2] right form; conditions can’t
(cond-> [] see value being threaded.
(odd? x) (conj "x is odd")
(zero? (rem y 3)) (conj "y is divisible by 3") Condition is false, so
(

even? y) (conj "y is even")))
;=> ["x is odd" "y is even"]

this form is skipped, but
threading continues to
next pair of forms.

Notice that when the left-hand condition form of a pair is false, the right-hand
threaded form is skipped. cond-> is superficially similar to cond because both accept
predicate-result pairs, but cond will stop evaluating pairs as soon as it finds a predicate
that’s truthy, though the cond-> threading macro will evaluate every conditional.
cond->> is the same as cond->, except that the form is threaded into the last position
like ->> instead of through the first position like ->.

The succinctness of cond-> and cond->> also makes them hard to grasp at first. It
may help to see an equivalent implementation that makes more explicit what the
predicates are doing and where the threading occurs:

(let [x 1 y 2]
(as-> [] <>

(if (odd? x) (conj <> "x is odd") <>)
(if (zero? (rem y 3)) (conj <> "y is divisible by 3") <>)
(if (even? y) (conj <> "y is even") <>))

;=> ["x is odd" "y is even"]

The conditional threading macros are handy when you need to build up a data struc-
ture based on a large number of other factors, such as building a map of configura-
tion settings or running different map and filter functions conditionally over the same
data structure.

54

2.5

CHAPTER 2 Clojure elements: Data structures and functions

In this section, you saw various ways to control the execution flow of Clojure pro-
grams. We started off with conditionals and explored the associated logical functions.
We then addressed the idea of looping—not directly as imperative for loops do in
other languages but through a recursive form and through higher-order functions.
Armed with this knowledge, you could write a lot of code without ever missing imper-
ative constructs.

Summary

This was a long chapter! We started out by getting up and running with the Clojure
REPL and then addressed the basics of writing code in the language. Specifically, we
addressed forms that structure code, such as functions, let, and looping. We also
looked at execution control forms, such as if, when, and cond. We also visited some of
the data types and data structures that come built into the language. Understanding
these equips you to use and create the right data abstractions in your programs.

Armed with this knowledge, you can probably write a fair amount of Clojure code
already. The material from the next chapter, combined with this one, should enable
you to write almost any basic program using the core of Clojure. And from there we’ll
dive into more intermediate concepts.

In the next chapter, we’'re going to explore more building blocks of Clojure. We’ll
begin with a deep dive into functions in an attempt to understand Clojure’s support
for functional programming. We’ll also explore the idea of scope and show how to
organize your programs with namespaces. Finally, we’ll explore a concept somewhat
unique to Clojure (well, uncommon in imperative languages such as Java and C++ at
least) called destructuring.

Buwilding blocks of Cloyure

This chapter covers

Clojure metadata

Java exceptions

Higher-order functions
Scoping rules

Clojure namespaces

Clojure’s destructuring feature
Clojure’s reader literals

When people are good at something already (such as a programming language),
and they try to learn something new (such as another programming language),
they often fall into what Martin Fowler (martinfowler.com/bliki/Improvement-
Ravine.html) calls an “improvement ravine.” For programming, the ravine refers to
the drop in productivity experienced when one has to relearn how to do things in
the new language. We’ve all been guilty of switching back to a language we’re
already good at to get the job done. It sometimes takes several attempts to get over
enough of the ravine to accomplish simple things. The next few chapters aim to do
that—we’ll review the basics of Clojure in more detail. After reading them, you’ll
be comfortable enough to solve problems of reasonable complexity. We’ll also

55

http://martinfowler.com/bliki/ImprovementRavine.html
http://martinfowler.com/bliki/ImprovementRavine.html

56

3.1

CHAPTER 3 Building blocks of Clojure

cover most of the remaining constructs of the language, many of which will be familiar
to you if you use other common languages.

First, we’ll examine metadata, which is a unique way to associate additional data
with an ordinary Clojure value without changing the value. Next, we’ll show you
another piece of Java interop: exception handling and throwing.

Then in the meat of the chapter we’ll examine functions in some detail. Lisp was
born in the context of mathematics, and functions are fundamental to it. Clojure uses
functions as building blocks, and thus mastering functions forms the basis of learning
Clojure. We’ll then look at how namespaces help organize large programs. These are
similar to Java packages; they’re a simple way to keep code organized by dividing the
program into logical modules.

The next section will examine vars (those things created by def) in detail and how
to use them effectively. The following section is about destructuring, something that’s
rather uncommon in most languages. Destructuring is a neat way of accessing interest-
ing data elements from inside larger data structures.

Finally, we’ll conclude this chapter by taking a look at reader literals, which will
allow you to add your own convenience syntax for data literals. Without any further
ado, let’s review how Clojure creates and uses functions.

Metadata

Metadata means data about data. Clojure supports tagging data (for example, maps,
lists, and vectors) with other data without changing the value of the tagged data. What
this means specifically is that the same values with different metadata will still com-
pare equal.

The point of using immutable values instead of mutable objects is that you can eas-
ily compare values by their content instead of their identity. The two vectors [1 2 3] and
[1 2 3] are the same even if they have different addresses in computer memory, so it
doesn’t matter which one your program uses. But in the real world you often need to
distinguish between otherwise identical things in meaningful ways. For example, one
value may compare equal to another, but it makes a difference if one value came from
an untrusted network source or a file with a specific name. Metadata provides a way to
add identity to values when it matters.

For example, you’ll use the tags :safe and :io to determine if something is con-
sidered a security threat and if it came from an external 1/O source. Here’s how you
might use metadata to represent such information:

(def untrusted (with-meta {:command "delete-table" :subject "users"}
{:safe false :io true}))

Now the map with keys :command and :subject has a metadata map attached to it
with keys :safe and :io. Metadata is always a map. Note that the metadata map is
attached on the “outside” of the object with metadata: :safe and :io aren’t ever
added as keys to the original map.

Metadata 57

You can also define metadata with a shorthand syntax using the reader macro “{}.
This example is exactly the same as the previous one except the metadata is added at
read time instead of eval time:

(def untrusted “{:safe false :io true} {:command "delete-table"
:subject "users"})

The read-time verses eval-time distinction is important: the following example is not
the same as using vary-meta:

(def untrusted “{:safe false :io true} (hash-map :command "delete-table"
:subject "users")

This associates metadata with the /st starting with hash-map, not the hash map that a
function call produces, so this metadata becomes invisible at runtime.

Objects with metadata can be used like any other objects. The additional metadata
doesn’t affect their values. In fact, if you were to check what untrusted was at the
read-evaluate-print loop (REPL), the metadata won’t even appear:

untrusted
;j=> {:command "delete-table", :subject "users"}

As mentioned earlier, metadata doesn’t affect value equality; therefore, untrusted
can be equal to another map that doesn’t have any metadata on it at all:

(def trusted {:command "delete-table" :subject "users"}) 4—7 No metadata
;=> #'user/trusted
(= trusted untrusted) B .
: ut still equal
;j=> true q

If you want to examine the metadata associated with the value, you can use the
meta function:

(meta untrusted)

;j=> {:safe false, :io true}
(meta trusted)

;=> nil

When new values are created from those that have metadata, the metadata is copied
over to the new data. This is to preserve the identity semantics of metadata, for example:

(def still-untrusted (assoc untrusted :complete? false))

;=> #'user/still-untrusted

still-untrusted

;=> {:complete? false, :command "delete-table", :subject "users"}
(meta still-untrusted)

;j=> {:safe false, :io true}

Functions and macros can also be defined with metadata. Here’s an example:

(defn “{:safe true :console true
:doc "testing metadata for functions"}
testing-meta
[1

(println "Hello from metal!"))

58

3.1.1

CHAPTER 3 Building blocks of Clojure

Now try using the meta function to check that the metadata was set correctly:

(meta testing-meta)
;=> nil

This returns nil because the metadata is associated with the var testing-meta and
not the function itself. To access the metadata, you’d have to pass the testing-meta
var to the meta function. You can do this as follows:

(meta (var testing-meta))
;=> {:ns #<Namespace user>,
:name testing-meta,
:file "NO SOURCE FILE",
:line 1, :arglists ([]),
:console true,
:safe true,
:doc "testing metadata for functions"}

You’ll learn more about vars and functions later in this chapter.

Metadata is useful in many situations where you want to tag things for purposes
orthogonal to the data they represent. Such annotations are one example where you
might perform certain tasks if objects are annotated a certain way, such as if their
metadata contains a certain key and value. By the way, this may seem similar to Java’s
annotations, but it’s much better. For instance, in Clojure, nearly anything can have
metadata, unlike in Java where only classes and methods can have annotations. Sadly,
you can’t add Clojure metadata to native Java types such as strings.

Clojure internally uses metadata quite a lot; for example, the :doc key is used to
hold the documentation string for functions and macros, the :macro key is set to true
for functions that are macros, and the :file key is used to keep track of what source
file something was defined in.

Java type hints
One of the pieces of metadata you may encounter often when making Java method
calls from Clojure is a Java type hint, which is stored in the meta key :tag. It’s used
often enough that it has its own reader macro syntax: “symbol. Why do you need this?
When you make a Java method call using interop, the Java virtual machine (JVM)
needs to know what class defines a method name so it can find the implementation of a
method in the class. In Java this is normally not a problem because most types are anno-
tated in the Java code and verified at compile time. Clojure is dynamically typed, how-
ever, so often the type of a variable isn’t known until runtime. In these cases the JVM
needs to use reflection to determine the class of an object at runtime and find the cor-
rect method to call. This works fine but can be slow. Here’s an example of the problem:

(set! *warn-on-reflection* true)

j=> true

(defn string-length [x] (.length x))
Reflection warning, reference to field length can't be resolved.
;=> #'user/string-length

Warns you when
reflection is needed

3.1.2

Metadata 59

(time (reduce + (map string-length (repeat 10000 "12345"))))

"Elapsed time: 45.751 msecs"

;=> 50000

(defn fast-string-length ["“String x] (.length x))

;=> #'user/fast-string-length

(time (reduce + (map fast-string-length (repeat 10000 "12345"))))

"Elapsed time: 5.788 msecs"

;=> 50000

(meta #'fast-string-length)

i=> {:ns #<Namespace user>, :name fast-string-length, :file "NO SOURCE FILE",
:column 1, :line 1, :arglists (I[x])}

No reflection
warning

(meta (first (first (:arglists (meta #'fast-string-length))))) Type hint on
;=> {:tag String} the function
argument

The last line demonstrates how Clojure stores type hints on function arguments: here
you inspect the metadata on fast-string-length, getits :arglists (list of the signa-
tures of all a function’s arities), and get metadata on the x symbol in the argument list.
Clojure’s compiler is pretty smart about inferring types, and all core Clojure func-
tions are already type-hinted where necessary, so it’s not that often that you’ll need to
resort to type hints. The idiomatic approach is to write all your code without type
hints and then (set! *warn-on-reflection* true) and keep reevaluating your
namespace and adding hints one at a time until the reflection warnings go away. If
you concentrate type hinting on function arguments and return values, Clojure will
often figure out all the types in the function body for you. You can read all the
details of type hinting (including how to hint function return values) in Clojure’s doc-
umentation at http://clojure.org/java_interop#Java%20Interop-Type %20Hints.

Java primitive and array types

Java has some special types called primitives that aren’t full-fledged objects and that get
special treatment by the JVM to increase speed and save memory (http://docs.oracle
.com/javase/tutorial/java/nutsandbolts/datatypes.html). They’re recognized by their
lowercase type names in Java documentation: byte, short, int, long, float, double,
boolean, and char. These are sometimes called unboxed types because they don’t have
an object “box” around them or any object methods.' Java arrays are fixed-length
homogenous containers for other types; they’re also primitive types, and there’s even a
different array type for each possible thing the array can hold!

Primitives don’t have a pronounceable class name to refer to them, so it’s not obvi-
ous how to type hint them. Fortunately, Clojure defines aliases for all the primitive
types and for all arrays of primitive types: just use a type hint like “byte for the primi-
tive and the plural form “bytes for the array-of-primitive.

! Java will automatically “box” primitive types with a corresponding object wrapper (for example, a long with
a java.lang.Long) when you call a method on the primitive. See http://docs.oracle.com/javase/tutorial /
java/data/autoboxing.html for details.

http://clojure.org/java_interop#Java Interop-Type Hints
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

60

3.2

CHAPTER 3 Building blocks of Clojure

But you may occasionally need to type hint an array of Java objects. In this case you
need to do some magic to find the strange class name:

class returns an instance of
(defn array-type [klass] java.lang.Class representing

(.getName (class (make-array klass 0)))) the class of its argument; Class
;=> #'user/array-type has a method getName that

(array-type BigDecimal) returns class name as a string.

;=> "[Ljava.math.BigDecimal;" . .
(def bigdec-arr QJ Type'hmt with
[Ljava.math.BigDecimal;" a string name

(into-array BigDecimal [1.0M]))

A

into-array returns a Java array
of a specified type filled with items
from a Clojure collection.

Pretty much the only time you’ll need to know the class name of an object array is
when you’re writing classes and interfaces in Clojure that are meant to be used by Java
code and you need to accept or return an array of objects. We’ll cover this topic in
chapter 6.

Java exceptions: try and throw

Java has exceptions, as you’ve seen, but until now we haven’t mentioned how to
manipulate them in Clojure. If an expression has the potential to throw an exception,
a try/catch/finally block can be used to catch it and decide what to do with it.?
Suppose you have a function that calculates the average of a collection of numbers:
(defn average [numbers]

(let [total (apply + numbers)]
(/ total (count numbers))))

If you call the average function with an empty collection, you get an exception:

(average [])
ArithmeticException Divide by zero clojure.lang.Numbers.divide
(Numbers.java:156)

Normally you’d check for the empty collection, but you can add a try/catch block
to illustrate:

(defn safe-average [numbers]
(let [total (apply + numbers)]

(try . .
(/ total (count numbers)) Fx;eptl:;n ObIeCt
(catch ArithmeticException e is bound to e.

(println "Divided by zero!")
0))))

;=> #'user/safe-average

2 Ifyou’re familiar with Java, note that Clojure doesn’t have checked exceptions. Catching and handling excep-
tions are always optional in Clojure.

Java exceptions: try and throw 61

(safe-average [])
Divided by zero!
;=> 0

The general form of using try/catch/finally is straightforward:
(try expr* catch-clause* finally-clause?)

The form accepts multiple expressions as part of the try clause and multiple catch
clauses. The finally clause is optional. The expressions passed to the try clause are
evaluated one by one, and the value of the last is returned. If any of them generate an
exception, the appropriate catch clause is executed based on the type (Java class) of
the exception, and the value of that is then returned. The optional £inally clause is
always executed for any side effects that need to be guaranteed, but nothing is ever
returned from it. For example:

(try
(print "Attempting division... ") RuntimeException
/ 1 0) is a superclass of

catch RuntimeException e "Runtime exception!") ArithmeticException.

(
(
(catch ArithmeticException e "DIVIDE BY ZERO!")
(
(

zétcTIThrowable e "Unknown exception encountered!") <+ Throwable is

inally . i

(println "done."))) finally clause is :1o°sitibgleene"c

Attempting division... domne. always ext.ecut.ed, even if exception type

;=> "Runtime exception!™ no exception is thrown. in Java; all

(try exception types
(print "Attempting division... ") Not "DIVIDE BY ZERO! " are subclasses of
(/1 0) as you ?xpected? See java.lang
(finally discussion that follows. .Throwable.

(println "done.")))
Attempting division... done.
ArithmeticException Divide by zero clojure.lang.Numbers.divide
(Numbers.java:156)
If no catch clause matches,
exception is thrown as normal,
but £inally is still executed.

Notice that the RuntimeException catch clause matched, not the ArithmeticException
clause, even though this exception type is a better match. The reason is that catch
clauses are tried in order and the first possible match is used. ArithmeticException is
a kind of RuntimeException, so the RuntimeException test matched and that catch
clause was executed. You should arrange your catch clauses from most specific to least
specific exception type to avoid confusion about which clause will match.

Exceptions can be thrown as easily using the throw form. In any place where you
wish to throw an exception, you can do something like the following:

(throw (Exception. "this is an error!"))
Exception this is an error! user/eval807 (NO_SOURCE_FILE:1)

62

3.3

3.3.1

CHAPTER 3 Building blocks of Clojure

throw accepts a java.lang.Throwable instance, so any kind of exception can be
thrown using it.

That covers the basics of using the try/catch/finally form as well as throwing
exceptions. This isn’t a commonly used feature of the Clojure language because there
are several helper macros that take care of many situations where you might need to
use this form. You’ll see this more in chapter 5.

Functions

As discussed in chapter 1, Lisp was born in the context of mathematics and is a func-
tional language. A functional language, among other things, treats functions as first-
class elements. This means that the following things are true:

= Functions can be created dynamically (at runtime).

= Functions can be accepted as arguments by other functions.

» Functions can be returned from functions as return values.

= Functions can be stored as elements inside other data structures (for exam-
ple, lists).

You’ve been creating and using functions for at least a chapter, but we haven’t yet fully
explored all their features and uses. This section will give you a more detailed look at
what functions are and how they work, and you’ll see several code examples that
illustrate their more advanced uses. We’ll begin by defining simple functions, with
both fixed and variable number of parameters. After that, we’ll examine anonymous
functions and a few shortcuts for using them, followed by using recursion as a means
of looping. We’ll end the section with a discussion on higher-order functions and
closures. To get started, let’s examine the means that Clojure provides to define your
own functions.

Defining functions

Functions are defined using the defn macro. The syntax of the defn macro is

(defn function-name
doc-string?
metadata-map?
[parameter-list*]
conditions-map?
body-expressions*)

Here, the symbols with a question mark at the end are optional. In other words,
although function-name and parameters are required, doc-string, metadata-map,
and conditions-map are optional. Before discussing more details of this structure, let’s
take a quick look at an example. This example is quite basic; all it does is accept an item
cost and the number of items and returns a total by multiplying them together:

(defn total-cost [item-cost number-of-items]
(* item-cost number-of-items))

Functions 63

Here, total-cost is the name of the new function defined. It accepts two parameters:
item-cost and number-of-items. The body of the function is the form that’s the call
to the multiply function (*), which is passed the same two arguments. There’s no
explicit return keyword in Clojure; instead, function bodies have an implicit do block
surrounding them, meaning that the value of the last expression in the function body
is returned. By the way, you can just type these examples (and the others in this book)
at the REPL to see how they work.

Notice that defn is described as a macro. There’s a whole chapter on macros
coming up (chapter 7), but it’s worth mentioning that the defn form expands to a
def. For example, the definition of the previous total-cost function is expanded
to this:

(def total-cost (fn [item-cost number-of-items]
(* item-cost number-of-items)))

total-cost is what Clojure calls a var. Note also that the function is in turn created
using the fn macro. Because creating such vars and pointing them to a function is
common, the defn macro was included in the language as a convenience.

If you wanted to, you could add a documentation string to the function, by passing
a value for the doc-string parameter you saw earlier:

(defn total-cost
"return line-item total of the item and quantity provided"
[item-cost number-of-items]
(* item-cost number-of-items))

In addition to providing a comment that aids in understanding this function, the
documentation string can later be called up using the doc macro. This is because
the doc-string is simply syntactic sugar to add the :doc key to the function var’s
metadata that the doc macro can then read. To see this, type the following at
the REPL:

(meta #'total-cost)

;=> {:ns #<Namespace user>, :name total-cost, :file "NO SOURCE FILE",
:column 1, :line 1, :arglists ([item-cost number-of-items]),
:doc "return line-item total of the item and quantity provided"}

(doc total-cost)

user/total-cost

([item-cost number-of-items])

return line-item total of the item and quantity provided

;=> nil

If you hadn’t defined the function with the doc-string, then doc wouldn’t have
been able to return any documentation other than the function name and parame-
ter list.

64

Notice ™ {}
before name

Metadata
merged
together

CHAPTER 3 Building blocks of Clojure

The metadata-map is rarely seen outside of macros that define functions, but it’s
good to know what it means. It’s simply another way to add metadata to the defined
var. Observe what happens when you use the metadata-map field:

QJ Metadata without
(meta (defn myfn-attr-map {:a 1} [])) using ~ {}

;=> {:ns #<Namespace user>, :name myfn-attr-map, :file "NO_SOURCE_FILE",
:column 7, :line 1, :arglists ([]), :a 1}

(meta (defn *{:a 1} myfn-metadata []))

i=> {:ns #<Namespace user>, :name myfn-metadata, :file "NO_ SOURCE_FILE",
:column 7, :line 1, :arglists ([]), :a 1}

(meta (defn *{:a 1} myfn-both {:a 2 :b 3} []))

i=> {:ns #<Namespace user>, :name myfn-both, :file "NO_ SOURCE_FILE",
:column 7, :line 1, :arglists ([1), :a 2, :b 3}

(meta (defn *{:a 1 :doc "doc 1"} myfn-redundant-docs "doc 2" {:a 2 :b 3
:doc "doc 3"} [1))

;=> {:ns #<Namespace user>, :name myfn-redundant-docs, :file "NO SOURCE FILE",
:column 7, :line 1, :arglists ([]1), :a 2, :b 3, :doc "doc 3"}

Metadata key-value pairs from different metadata
sources overwrite each other from left to right.

As you can see, adding metadata to the function name symbol and using a metadata-
map are exactly equivalent. You can even use multiple ways of defining metadata at the
same time: metadata farther to the right (like doc-string and metadata-map) will
overwrite the same keys defined to their left.

Recall the general form of the defn macro from earlier. It has an optional
conditions-map, and you’ll now see what it’s used for. Consider the following func-
tion definition:

(defn item-total [price quantity discount-percentage]
{:pre [(> price 0) (> gquantity 0)]
:post [(> % 0)]1}
(->> (/ discount-percentage 100)
(- 1)
(* price quantity)
float))

Here, item-total behaves as a normal function that applies a simple formula to the
arguments and returns a result. Remember, you saw the thread-last (->>) operator in
the previous chapter. At runtime, this function runs additional checks as specified by
the hash map with the two keys :pre and :post. The checks it runs before executing
the body of the function are the ones specified with the :pre key (hence called pre-
conditions). In this case, there are two checks: one that ensures that price is greater
than zero and a second that ensures that quantity is also greater than zero.

Try it with valid input:
(item-total 100 2 0)
7=> 200.0

(item-total 100 2 10)
;=> 180.0

Functions 65

Now try it with invalid input:

(item-total 100 -2 10)
AssertionError Assert failed: (> quantity 0) wuser/item-total

Note that in this case, the function didn’t compute the result but instead threw an
AssertionError error with an explanation of which condition failed. The Clojure
runtime automatically takes care of running the checks and throwing an error if
they fail.

Now let’s look at the conditions specified by the :post key, called the postcondi-
tions. The % in these conditions refers to the return value of the function. The checks
are run after the function body is executed, and the behavior in the case of a failure is
the same: an AssertionError is thrown along with a message explaining which condi-
tion failed. Here’s an example of a corner case that you may have forgotten to check
for, but luckily you had a postcondition to catch it:

(item-total 100 2 110)
AssertionError Assert failed: (> % 0) wuser/item-total

Now that you’ve seen how to add preconditions and postconditions to your functions,
we’re ready to move on. We’ll next look at functions that can accept different sets
of parameters.

MULTIPLE ARITY
The arity of a function is the number of parameters it accepts. Clojure functions can
be overloaded on arity, meaning that you can execute a different function body
depending on the number of parameters the function was called with. To define func-
tions with such overloading, you can define the various forms within the same function
definition as follows:
(defn function-name

;; Note that each argument+body pair is enclosed in a list.

([argll body-executed-for-one-argument-call)

([argl arg2] body-executed-for-two-argument-call)
;; More cases may follow.

Let’s look at an example:

(defn total-cost
([item-cost number-of-items]
(* item-cost number-of-items))
([item-cost]
(total-cost item-cost 1)))

Here, two arities of the total-cost function are defined. The first is of arity 2, and it’s
the same as the one we defined earlier. The other is of arity 1, and it accepts only the
first parameter, item-cost. Note that you can call any other version of the function
from any of the other arities. For instance, in the previous definition, you call the
dual-arity version of total-cost from the body of the single-arity one.

66

CHAPTER 3 Building blocks of Clojure

VARIADIC FUNCTIONS

We touched very briefly on variadic functions in chapter 2, but now we get the full
story. A variadic function is a function with an arity that takes a variable number of
arguments. Different languages support this in different ways; for example, C++ has
the ellipsis, and Java has varargs. In Clojure, the same is achieved with the & symbol:

(defn total-all-numbers [& numbers]
(apply + numbers))

Here, total-all-numbers is a function that can be called with any number of
optional arguments. All the arguments are packaged into a single list called numbers,
which is available to the body of the function. You can use this form even when you do
have some required parameters. The general form of declaring a variadic function is
as follows:

(defn name-of-variadic-function [param-1 param-2 & rest-args]
(body-of-function))

Here, param-1 and param-2 behave as regular named parameters, and all remaining
arguments will be collected into a list called rest -args. By the way, the apply function
is a way of calling a function when you have the arguments inside a list. You’ll see this
in more detail in section 3.3.2, “Calling functions.”

Notice that a variadic function can have other nonvariadic arities, too. (Nonvari-
adic arities are called fixed arities.) The only restriction is that the variadic arity must
have at least as many required arguments as the longest fixed arity. For example, the
following is a valid function definition:

(defn many-arities

(11 0)
([a]l 1)
([a b cl 3)

([a b ¢ & more] "variadic"))
;=> #'user/many-arities
(many-arities)
1=> 0
(many-arities "one argument")
;=>1
(many-arities "two" "arguments")
ArityException Wrong number of args (2) passed to: user/many-arities
clojure.lang.AFn.throwArity (AFn.java:429)

(many-arities "three" "argu-" "ments")

>4

;=> 3

(many-arities "many" "more" "argu-" "ments")

;=> "variadic"

RECURSIVE FUNCTIONS

Recursive functions are those that either directly or indirectly call themselves. Clojure
functions can certainly call themselves using their names, but this form of recursion
consumes the stack. If enough recursive calls are made, eventually the stack will

Functions 67

overflow. This is how things work in most programming languages. There’s a feature
in Clojure that circumvents this issue. You’ll first write a recursive function that will
blow the stack:

(defn count-down [n] QJ rem means
(when-not (zero? n) remainder of division.
(when (zero? (rem n 100))
(println "count-down:" n)) Q*AJ dec means
(count -down (dec n)))) decrement by one.

If you try calling count-down with a large number, for instance 100,000, you'll get a
StackOverflowError thrown at you:

(count-down 100000)

count-down: 100000

count-down: 99900
count-down: 99800

count-down: 90200
StackOverflowError clojure.lang.Numbers$LongOps.remainder (Numbers.java:505)

You’ll now see how to ensure that this doesn’t happen.

In the last chapter, you saw the loop/recur construct that allowed you to iterate
through sequences of data. The same recur form can be used to write recursive func-
tions. When used in the “tail” position of a function body, recur binds its arguments
to the same names as those specified in its parameter list. You’ll rewrite count-down
using recur:

(defn count-downr [n]
(when-not (zero? n)
(if (zero? (rem n 100))

(println "count-down:" n))
(recur (dec n))))

This now works for any argument, without blowing the stack. The change is minimal
because at the end of the function body, recur rebinds the function parameter n to
(dec n), which then proceeds down the function body. When n finally becomes zero,
the recursion ends. As you can see, writing self-recursive functions is straightforward.
Writing mutually recursive functions is a bit more involved, and we’ll look at that next.

IMUTUALLY RECURSIVE FUNCTIONS

Mutually recursive functions are those that either directly or indirectly call each other.
Let’s begin this section by examining an example of such a case. Listing 3.1 shows a
contrived example of two functions, cat and hat, that call each other. Because cat
calls hat before hat is defined, you need to declare it first. When given a large enough
argument, they’ll throw the same StackOverflowError you saw earlier. Note that the
declare macro calls def on each of'its arguments. This is useful in cases where a func-
tion wants to call another function that isn’t defined yet, as is the case with a pair of
mutually recursive functions in the following listing.

68

CHAPTER 3 Building blocks of Clojure

Listing 3.1 Mutually recursive functions that can blow the stack

(declare hat)
(defn cat [n]
(when-not (zero? n)
(when (zero? (rem n 100))
(println "cat:" n))
(hat (dec n))))

(defn hat [n]
(when-not (zero? n)
(if (zero? (rem n 100))
(println "hat:" n))
(cat (dec n))))

Let’s now fix this problem. You can’t use recur because recur is only useful for self-
recursion. Instead, you need to modify the code to use a special Clojure function
called trampoline. To do so, you’ll make a slight change to the definition of cat and
hat. The new functions are shown in the following listing as catt and hatt.

Listing 3.2 Mutually recursive functions that can be called with trampoline

(declare hatt)
(defn catt [n]
(when-not (zero? n)
(when (zero? (rem n 100))
(println "catt:" n))
(fn []1 (hatt (dec n)))))
(defn hatt [n]
(when-not (zero? n)
(when (zero? (rem n 100))
(println "hatt:" n))
(fn [1 (catt (dec n)))))

The difference is so minor that you could almost miss it. Consider the definition of
catt, where instead of making the recursive call to hatt, you now return an anony-
mous function that when called makes the call to hatt. The same change is made in
the definition of hatt. You’ll learn more about anonymous functions in section 3.3.5.

Because these functions no longer perform their recursion directly, you have to
use another function to call them. A function that accepts another function as an
argument is called a higher-order function. The higher-order function you need here is
trampoline, and here’s an example of using it:

(trampoline catt 100000)
catt: 100000
catt: 99900

catt: 200
catt: 100
;=> nil

3.3.2

Functions 69

This doesn’t blow the stack and works as expected. Internally, trampoline works by
calling recur. Here’s the implementation:

(defn trampoline

([f]
(let [ret (f)] £n? means “Is
(1f (fn? ret) % my argument a
(recur ret) function?”
ret)))
([f & args]
(trampoline (fn [] (apply f args)))))

Notice that trampoline is a higher-order function that sets up a local recursion
point using the let form. It executes the function represented by the argument £
and calls recur whenever the return value is itself a function. You could have done
this yourself, but conveniently trampoline is available to you as part of the core set
of Clojure functions.

You’ve now seen how recursive functions can be written in Clojure. Although using
recur and trampoline is the correct and safe way to write such functions, if you’re
sure that your code isn’t in danger of consuming the stack, it’s okay to write them
without using these. Now that you’ve seen the basics of defining functions, let’s look at
a couple of ways to call them.

Calling functions

Because functions are so fundamental to Clojure, you'll be calling a lot of functions in
your programs. The most common way of doing this looks similar to the following:

(+ 1 2 3 4 5)
;j=> 15

Here, the symbol + represents a function that adds its arguments. As a side note, Clo-
jure doesn’t have the traditional operators present in other languages. Instead, most
operators are defined in Clojure itself, as any other function or macro. Coming back
to the previous example, the + function is variadic, and it adds up all the parameters
passed to it and returns 15.

There’s another way to evaluate a function. Let’s say someone handed you a
sequence called list-of-expenses, each an amount such as 39.95M. In a language
such as Java, you’d have to perform some kind of iteration over the list of expense
amounts, combined with collecting the result of adding them. In Clojure, you can
treat the list of numbers as arguments to a function like +. The evaluation, in this case,
is done using a higher-order function called apply:

(apply + list-of-expenses)

The apply function is extremely handy, because it’s quite common to end up with a
sequence of things that need to be used as arguments to a function. This is because
a lot of Clojure programs use the core sequence data structures to do their job.

70

3.3.3

CHAPTER 3 Building blocks of Clojure

As you saw, apply is a higher-order function that accepts another function as its
first parameter. Higher-order functions are those that accept one or more functions as
parameters, or return a function, or do both. You’ll now learn a bit more about this
powerful concept by looking at a few examples of such functions provided by Clojure.

Higher-order functions

As we discussed in the previous chapter, functions in Clojure are first-class entities.
Among other things, this means that functions can be treated similarly to data: they
can be passed around as arguments and can be returned from functions. Functions
that do these things are called higher-order functions.

Functional code makes heavy use of higher-order functions. The map function that
you saw in chapter 2 is one of the most commonly used higher-order functions. Other
common ones are reduce, filter, some, and every?. You saw simple examples of map,
reduce, and filter in chapter 2. Higher-order functions aren’t just convenient ways
of doing things such as processing lists of data but are also the core of a programming
technique known as function composition. In this section, we’ll examine a few interest-
ing higher-order functions that are a part of Clojure’s core library.

EVERY?

every? is a function that accepts a testing function that returns a boolean (such func-
tions are called predicate functions) and a sequence. It then calls the predicate func-
tion on each element of the provided sequence and returns true if they all return a
truthy value; otherwise, it returns false. Here’s an example:

(def bools [true true true false falsel)
;=> #'user/bools

(every? true? bools)

;=> false

true?isa
predicate function.

This returns false because not every value in the bools vector is true.

SOME

some has the same interface as every?—that is, it accepts a predicate and a sequence.
It then calls the predicate on each element in the sequence and returns the first logi-
cally true value it gets. If none of the calls return a logically true value, some returns
nil. Here’s an example, which is a quick-and-dirty way to check if a particular value
exists in a sequence:

(some (fn [p] (= "rob" p)) ["kyle" "siva" "rob" "celeste"])
;=> true returns true

This returns true because it returns the first logically true value returned by applying
the anonymous function to each of the elements of the vector. In this case, the third
element of the vector is "rob", and that returns true.

Functions 71

CONSTANTLY

constantly accepts a value v and returns a variadic function that always returns the
same value v no matter what the arguments. It’s equivalent to writing (fn [& more] v).
Here’s an example:

(def two (constantly 2)) ; same as (def two (fn [& more] 2))
; or (defn two [& more] 2)

;=> #'user/two

(two 1)

;=> 2

(two :a :b :c)

;=> 2

two is a function that returns 2, no matter what or how many arguments it’s called with.
constantly is useful when a function requires another function but you just want a
constant value.

COMPLEMENT
complement is a simple function that accepts a function and returns a new one that
takes the same number of arguments, does the same thing as the original function
does, but returns the logically opposite value.

For instance, consider a function that checks if the first of two arguments is greater
than the second:

(defn greater? [x y]
(> xvy))

And here it is in action:

(greater? 10 5)
;=> true
(greater? 10 20)
;=> false

Now, if you wanted to write a function that instead checked if the first of two argu-
ments was smaller than the second, you could implement it in a similar way, but you
could also just use complement:

(def smaller? (complement greater?))
And in use:

(smaller? 10 5)
;=> false

(smaller? 10 20)
;j=> true

It’s a convenient function that in certain cases lets you implement one side of logical
scenarios and declare the other side as being opposite.

72

CHAPTER 3 Building blocks of Clojure

comP

comp, short for composition, is a higher-order function that accepts multiple functions
and returns a new function that’s a composition of those functions. The computation
goes from right to left—that is, the new function applies its arguments to the right-
most of the original constituent functions, then applies the result to the one left of it,
and so on, until all functions have been called. Here’s an example:

(def opp-zero-str (comp str not zero?))
Here are examples of using this:

(opp-zero-str 0)
;=> "false"

(opp-zero-str 1)
j=> "true"

Here, opp-zero-str when called with 1 first applies the function zero? to it, which
returns false; it then applies not, which returns true, and then applies str, which con-
verts it to a string "true".

PARTIAL

partial, which is short for partial application, is a higher-order function that accepts
a function f and a few arguments to £ but fewer than the number £ normally takes.
partial then returns a new function that accepts the remaining arguments to f.
When this new function is called with the remaining arguments, it calls the original £
with all the arguments together. Consider the following function that accepts two
parameters, threshold and number, and checks to see if number is greater than
threshold:

(defn above-threshold? [threshold number]
(> number threshold))

To use it to filter a list, you might do this:

(filter (fn [x] (above-threshold? 5 x)) [1 2 3 4 5 6 7 8 91])
;j=> (6 7 8 9)

With partial, you could generate a new function and use that instead:

(filter (partial above-threshold? 5) [1 2 3 4 5 6 7 8 9])
i=> (6789)

The idea behind partial is to adapt functions that accept n arguments to situations
where you need a function of fewer arguments, say n-k, and where the first k argu-
ments can be fixed. This is the example you just saw previously, where a two-argument
function above-threshold? was adapted to a situation that needed a single-argument
function. For instance, you may want to use a library function that has a slightly differ-
ent signature than what you require and needs to be adapted for your use.

3.34

Functions 73

MEMOIZE

Memoization is a technique that prevents functions from computing results for argu-
ments that have already been processed. Instead, return values are looked up from a
cache. Clojure provides a convenient memoize function that does this. Consider the
following artificially slow function that performs a computation:

(defn slow-calc [n m]
(Thread/sleep 1000)
(* n m))

Calling it via a call to the built-in function time tells you how long it’s taking to run:

(time (slow-calc 5 7))
"Elapsed time: 1000.097 msecs"
;=> 35

Now, you can make this fast, by using the built-in memoize function:

(def fast-calc (memoize slow-calc))

For memoize to do its thing, you call fast-calc once with a set of arguments (say 5
and 7). You’ll notice that this run appears as slow as before, only this time the result
has been cached. Now, you call it once more via a call to time:

(time (fast-calc 5 7))
"Elapsed time: 0.035 msecs"
;=> 35

This is pretty neat! Without any work at all, you’re able to substantially speed up
the function.

But there’s a big caveat to memoize: the cache that backs memoize doesn’t have a
bounded size and caches input and results forever. Therefore, memoize should only be
used with functions with a small number of possible inputs or else you’ll eventually
run out of memory. If you need more advanced memoization features (such as
caches with bounded size or with eviction policies) look at the much more powerful
clojure.core.memoize library at https://github.com/clojure/core.memoize. These
are some examples of what higher-order functions can do, and these are only a few of
those included with Clojure’s standard library. Next, you’ll learn more about con-
structing complex functions by building on smaller ones.

Writing higher-order functions

You can create new functions that use existing functions by combining them in vari-
ous ways to compute the desired result. For example, consider the situation where you
need to sort a given list of user accounts, where each account is represented by a hash
map, and where each map contains the username, balance, and the date the user
signed up. This is shown in the next listing.

https://github.com/clojure/core.memoize

74

CHAPTER 3 Building blocks of Clojure

(def users

[{:username nkyle"
:firstname "Kyle"
:lastname "Smith"
:balance 175.00M ; Use BigDecimals for money!
:member-since "2009-04-16"}

{:username "zak"
:firstname "Zackary"
:lastname "Jones"
:balance 12.95M
:member-since "2009-02-01"}

{ :username "rob"
:firstname "Robert™"
:lastname "Jones"
:balance 98.50M

:member-since "2009-03-30"}1)
(defn sorter-using [ordering-fn]
(fn [collection]
(sort-by ordering-fn collection)))
(defn lastname-firstname [user]
[(user :lastname) (user :firstname)])
(defn balance [user] (user :balance))
(defn username [user] (user :username))
(def poorest-first (sorter-using balance))
(def alphabetically (sorter-using username))
(def last-then-firstname (sorter-using lastname-firstname))

Here, users is a vector of hash maps. Specifically, it contains three users representing
Kyle, Zak, and Rob. Suppose you wanted to sort these users by their username. You
can do this using the sort-by function: it’s a higher-order function the first argument
of which is a key function. The key function must accept one of the items you’re sort-
ing and return a key to sort it by. Let’s see this step by step. If you call username on

€Very user, you get every user’s name:

(map username users)

;=> ("kyle" "zak" "rob")
(sort *1)

;=> (llk-y-lell llrobll llzakll)

Remember, *1 means
“last result returned
by REPL.”

This is the list that sort -by will see when sorting items. sort-by will sort the items as ifit
were instead sorting a list created by (map key-function items). Putting it all together:

(sort-by username users)

;=> ({:member-since "2009-04-16", :username "kyle", ..}
{:member-since "2009-03-30", :username "rob", ..}
{:member-since "2009-02-01", :username "zak", ..})

Notice that the order of users is now Kyle, Rob, and Zack.
But what if you want to create functions that always sort in a specific order, without
having to specify an ordering function? That’s what the sorter-using function does.

Functions 75

It accepts a key function called ordering-fn and returns a function that accepts a col-
lection that it will always sort using sort-by and the original ordering-£fn. Take a look
at sorter-using again:

(defn sorter-using [ordering-fn]

(fn [collection]
(sort-by ordering-fn collection)))

You define sorter-using as a higher-order function, one that accepts another func-
tion called ordering-£fn, which will be used as a parameter to sort-by. Note here that
sorter-using returns a function, defined by the fn special form that you saw earlier.
Finally, you define poorest-first and alphabetically as the two desired functions,
which sort the incoming list of users by :balance and :username. This is as simple as
calling sorter-using, thus:

(def poorest-first (sorter-using balance))
This is the same as
(defn poorest-first [users] (sort-by balance users))

Both produce a sequence of users sorted by balance:

(poorest-first users)

;=> ({:username "zak", :balance 12.95M, ..}
{:username "rob", :balance 98.50M, ..}
{:username "kyle", :balance 175.00M, ..})

But suppose you wanted to sort by two criteria: first by each user’s last name and then
by first name if they share a first name with another user. You can do this by supplying
an ordered collection as the sorting key for an item: sequences are sorted by compar-
ing each of their members in order. For example, the lastname-firstname function
returns a vector of the last then first name of a user:

(map lastname-firstname users)

;=> (["Smith" "Kyle"] ["Jones" "Zackary"] ["Jones" "Robert"])

(sort *1)
;=> (["Jones" "Robert"] ["Jones" "Zackary"] ["Smith" "Kyle"])

So you can use this to sort the full user records with the last-then-firstname function:

(last-then-firstname users)

;=> ({:lastname "Jones", :firstname "Robert", :username "rob", ..}
{:lastname "Jones", :firstname "Zackary", :username "zak", ..}
{:lastname "Smith", :firstname "Kyle", :username "kyle", ..})

The two functions username and balance are used in other places, so defining them
this way is okay. If the only reason they were created was to use them in the definition
of poorest-first and alphabetically, then they could be considered clutter. You’ll
see a couple of ways to avoid the clutter created by single-use functions, starting with
anonymous functions in the next section.

76

3.3.5

CHAPTER 3 Building blocks of Clojure

Anonymous functions

As you saw in the previous section, there may be times when you have to create func-
tions for single use. A common example is when a higher-order function accepts
another function as an argument. An example is the sorter-using function defined
earlier. Such single-use functions don’t even need names, because no one else will be
calling them. Therefore, instead of creating regular named functions that no one else
will use, you can use anonymous functions.

You’ve seen anonymous functions before, even if we didn’t call them out. Consider
this code snippet from earlier in the chapter:

(def total-cost
(fn [item-cost number-of-items]
(* item-cost number-of-items)))

As we discussed earlier, this code assigns a value to the total-cost var, which is the func-
tion created by the fn macro. To be more specific, the function by itself doesn’t have a
name; instead, you use the var with the name total-cost to refer to the function. The
Junction itself is anonymous. To sum up, anonymous functions can be created using the fn
form. Let’s consider a situation where you need a sequence of dates of when your mem-
bers joined (perhaps for a report). You can use the map function for this:

(map (fn [user] (user :member-since)) users)
;=> ("2009-04-16" "2009-02-01" "2009-03-30")

Here, you pass the anonymous function (which looks up the :member-since key from
inside the users map) into the map function to collect the dates. This is a fairly trivial
use case, but there are cases where this will be useful.

Before we move on, let’s look at a reader macro that helps with creating anony-
mous functions.

A SHORTCUT FOR ANONYMOUS FUNCTIONS
We talked about reader macros in chapter 2. One of the reader macros provided by
Clojure allows anonymous functions to be defined quickly and easily. The reader macro
that does this is # (.

Here you’ll rewrite the code used to collect a list of memberjoining dates using
this reader macro:

(map #(% :member-since) users) 447 Same result!
;=> ("2009-04-16" "2009-02-01" "2009-03-30")

That’s much shorter! The # (% :member-since) is equivalent to the anonymous func-
tion used in the previous version. Let’s examine this form in more detail.

The # (), with the body of the anonymous function appearing within the parenthe-
ses, creates an anonymous function. The % symbol represents a single argument. If
the function needs to accept more than one argument, then %1, %2, ... can be used.
The body can contain pretty much any code, except for nested anonymous functions

3.3.6

Functions 77

defined using another # () reader macro. You can also use %& for the “rest” arguments
for a variadic function: the rest arguments are those beyond the highest explicitly
mentioned % argument. An example will clarify:

(#(vector %&) 1 2 3 4 5)

;=> [(1 2 3 4 5)]

(#(vector % %&) 1 2 3 4 5)

;=> [1 (2 3 4 5)]

(# (vector %1 %2 %&) 1 2 3 4 5)

;=> [1 2 (3 4 5)]

(# (vector %1 %2 %&) 1 2)

;=> [1 2 nil]

You’ll now see another way to write such functions—a way that will result in even
shorter code.

Keywords and symbols

Keywords are identifiers that begin with a colon—examples are :mickey and :mouse.

You learned about keywords and symbols in chapter 2. They’re some of the most heav-

ily used values in Clojure code, and they have one more property of interest. They’re

also functions, and their use as functions is quite common in idiomatic Clojure.
Keyword functions accept one or two arguments. The first argument is a map, and

the keyword looks itself up in this map. For example, consider one of the user maps

from earlier:

(def person {:username "zak"

:balance 12.95
:member-since "2009-02-01"})

To find out what username this corresponds to, you’d do the following:

(person :username)

;j=> "zak"

But now that you know that keywords behave as functions, you could write the same
thing as

(:username person)

;=> "zak"

This would also return the same "zak". Why would you want to do such a strange-
looking thing? To understand this, consider the code you wrote earlier to collect a list
of all dates when users signed up, from the previous example:

(map # (% :member-since) users)
;j=> ("2009-04-16" "2009-02-01" "2009-03-30")

Although this is short and easy to read, you could now make this even clearer by using
the keyword as a function:

(map :member-since users)
;j=> ("2009-04-16" "2009-02-01" "2009-03-30")

78

CHAPTER 3 Building blocks of Clojure

This is much nicer! Indeed, it’s the idiomatic way of working with maps and situations
such as this one. We said earlier that keyword functions could accept a second
optional parameter. This parameter is what gets returned if there’s no value in the
map associated with the keyword. As an example, consider the following two calls:
(:login person)

;j=> nil

(:login person :not-found)

;=> :not-found

The first call returns nil because person doesn’t have a value associated with :login.
Butifnil was a legitimate value for some key in the hash map, you wouldn’t be able to
tell if it returned that or if no association was found. To avoid such ambiguity, you’d
use the second form shown here, which will return :not-found. This return value tells
you clearly that there was nothing associated with the key :login.

SYMBOLS

Now let’s talk about symbols. In Clojure, symbols are identifiers that represent some
value. Examples are users and total-cost, which as you’ve seen represent the list of
users and a function. A symbol is a name as a value. To use the analogy of a dictionary,
the word in a dictionary entry is the symbol but the definition of the word is a binding of
that word to a particular meaning. A word and its definition aren’t the same—for
example, a word could have multiple definitions, or it could have a different defini-
tion at a different time. The same principle applies to symbols: the symbol user is
always the same as another symbol user, but they could point to (that is, be bound to)
different values. For example, one could point to a var containing a function, but
another one could be a local variable pointing to a user hash map.

Normally when the Clojure runtime sees a symbol like users, it automatically eval-
uates it and uses the value that the symbol represents. But you may wish to use symbols
as is. You may desire to use symbols themselves as values, for instance, as keys in a map
(or indeed in some kind of symbolic computation). To do this, you’d quote the sym-
bols. Everything else works exactly the same as in the case of keywords, including its
behavior as a function. Here’s an example of working with a hash map:

(def expense {'name "Snow Leopard" 'cost 29.95M})
;=> #'user/expense

(expense 'name)

;=> "Snow Leopard"

('name expense)

;=> "Snow Leopard"

('vendor expense)

i=> nil

('vendor expense :absent)

;=> :absent

You can see here that symbols behave similarly to keywords in this context. The
optional parameter that works as the default return value works just like in the case
of Clojure keywords.

Functions 79

Furthermore, as you saw earlier in this chapter and also in the previous one, it
turns out that maps and vectors have another interesting property, which is that
they’re also functions. Hash maps are functions of their keys, so they return the value
associated with the argument passed to them. Consider the example from earlier:

(person :username)
j=> "zak"

person is a hash map, and this form works because it’s also a function. It returns
"zak". Incidentally, hash maps also accept an optional second parameter, which is
what is returned when a value associated with the key isn’t found, for instance:

(person :login :not-found)
;=> :not-found

Vectors also behave the same way; they’re functions of their indices. Consider the fol-
lowing example:

(def names ["kyle" "zak" "rob"l)
;=> #'user/names

(names 1)

;=> nzakn

The call to names returns "zak", and this works because the vector names is a function.

Note here that vector functions don’t accept a second argument, and if an index that

doesn’t exist is specified, an exception is thrown:

(names 10)

IndexOutOfBoundsException clojure.lang.PersistentVector.arrayFor
(PersistentVector.java:107)

(names 10 :not-found)

ArityException Wrong number of args (2) passed to: PersistentVector
clojure.lang.AFn.throwArity (AFn.java:429)

The fact that vectors and hash maps are functions is useful when code is designed
with function composition in mind. Instead of writing wrapper functions, these data
structures can themselves be passed around as functions. This results in cleaner,
shorter code.

It’s worth spending some time and experimenting with the various ideas explored
in this section, because any nontrivial Clojure program will use most of these con-
cepts. A large part of gaining proficiency with a language like Clojure is understand-
ing and gaining proficiency with functional programming. Functional programming
languages are great tools for designing things in a bottom-up way, because small func-
tions can easily be combined into more complex ones. Each little function can be
developed and tested incrementally, and this also greatly aids rapid prototyping. Hav-
ing a lot of small, general functions that then combine to form solutions to the spe-
cific problems of the domain is also an important way to achieve flexibility.

Having seen how functions work, you’re ready to tackle another important ele-
ment in the design of Clojure programs: its scoping rules. In the next section, we’ll

80

3.4

34.1

CHAPTER 3 Building blocks of Clojure

explore scope. Scoping rules determine what’s visible where, and understanding this
is critical to writing and debugging Clojure programs.

Scope

Now that you’ve seen the basics of defining functions, we’ll take a bit of a detour and
show how scope works in Clojure. Scope, as it’s generally known, is the enclosing con-
text where names resolve to associated values. Clojure, broadly, has two kinds of scope:
static (or lexical) scope and dynamic scope. Lexical scope is the kind that program-
ming languages such as Java and Ruby offer. A lexically scoped variable is visible only
inside the textual block that it’s defined in (justifying the term lexical) and can be
determined at compile time (justifying the term static).

Most programming languages offer only lexical scoping, and this is the most famil-
iar kind of scope. The Lisp family has always also offered special variables that follow a
different set of rules for dynamic scope. We’ll examine both in this section. We’ll first
explore vars and how they can operate as special variables with dynamic scope. Then,
we’ll examine lexical scope and how to create new lexically scoped bindings.

Vars and binding

Vars in Clojure are, in some ways, similar to globals in other languages. Vars are defined
at the top level of any namespace, using the def special form. Here’s an example:

(def MAX-CONNECTIONS 10)

After this call, the MAX-CONNECTIONS var is available to other parts of the program.
Remember, def always creates the var at the level of the enclosing namespace no mat-
ter where it’s called. For instance, even if you call def from inside a function, it will
create the var at the namespace level. For local variables, you’ll need the let form,
which you’ve seen previously and which we’ll examine again shortly. The value of a var
is determined by its binding. In this example, MAX-CONNECTION is bound to the num-
ber 10, and such an initial binding is called a root binding. A var can be defined without
any initial binding at all, in the following form:

(def RABBITMQ-CONNECTION)

Here, RABBITMQ-CONNECTION is said to be unbound. If another part of the code tries to
use its value, an exception will be thrown saying that the var is unbound. To set a value
for an unbound var, or to change the value bound to a var, Clojure provides the binding
form. Unfortunately, as defined previously, calling binding will throw an exception
complaining that you can’t dynamically bind a non-dynamic var. To rebind vars, they
need to be dynamic, which is done using the following metadata declaration:

(def A:dynamic RABBITMQ-CONNECTION)
(binding [RABBITMQ-CONNECTION (new-connection)]
(
;i do something here with RABBITMQ-CONNECTION
))

Scope 81

The general structure of the binding form is that it begins with the symbol binding,
followed by a vector of an even number of expressions. The first of every pair in the
vector is a var, and it gets bound to the value of the expression specified by the second
element of the pair. Binding forms can be nested, which allows new bindings to be
created within each other. You’ll see a running example in a moment when we discuss
the implications of * :dynamic.

By the way, if you do try to rebind a var that wasn’t declared dynamic, you’ll see this
exception:

java.lang.IllegalStateException:
Can't dynamically bind non-dynamic var: user/RABBITMQ-CONNECTION

This should tip you off that you need to use the *:dynamic metadata on the var in
question.

As you saw earlier in this chapter, the defn macro expands to a def form, implying
that functions defined using defn are stored in vars. Functions can thus be redefined
using a binding form as well. This is useful for things like implementing aspect-oriented
programming or stubbing out behavior for unit tests.

SPECIAL VARIABLES
There’s one thing to note about vars: when declared with the

A

:dynamic metadata,
they become dynamically scoped. To understand what this means, again consider the
following var:

(def “:dynamic *db-host* "localhost™")

If you now call a function like expense-report, which internally uses *db-host* to
connect to a database, you’ll see numbers retrieved from the local database. For now,
test this with a function that prints the binding to the console:

(defn expense-report [start-date end-datel]
(println *db-host*)) ;; can do real work

Now, once you’ve tested things to your satisfaction, you can have the same code con-
nect to the production database by setting up an appropriate binding:

(binding [*db-host* "production"]
(expense-report "2010-01-01" "2010-01-07"))

This will run the same code as defined in the expense-report function but will con-
nect to a production database. You can prove that this happens by running the previ-
ous code; you'd see "production" printed to the console.

Note here that you managed to change what the expense-report function does,
without changing the parameters passed to it (the function connects to a database
specified by the binding of the *db-host* var). This is called action at a distance, and it
must be done with caution. The reason is that it can be similar to programming with
global variables that can change out from underneath you. But used with caution, it
can be a convenient way to alter the behavior of a function.

82

CHAPTER 3 Building blocks of Clojure

Such vars that need to be bound appropriately before use are called special vari-
ables. A naming convention is used to make this intent clearer: these var names begin
and end with an asterisk. In fact, if you have warnings turned on, and you name a var
with asterisks and don’t declare it dynamic, Clojure will warn you of possible trouble.

DYNAMIC SCOPE
You’ve seen how vars in general (and special variables in specific) can be bound to dif-
ferent values. We’ll now explore the earlier statement that vars aren’t governed by lex-
ical scoping rules. We’ll implement a simple form of aspect-oriented programming,
specifically a way to add a log statement to functions when they’re called. You'll see
that in Clojure this ends up being quite straightforward, thanks to dynamic scope.

Scope determines which names are visible at certain points in the code and which
names shadow which other ones. Lexical scope rules are simple to understand; you
can tell the visibility of all lexically scoped variables by looking at the program text
(hence the term lexical). Ruby and Java are lexically scoped.

Dynamic scope doesn’t depend on the lexical structure of code; instead, the value
of a var depends on the execution path taken by the program. If a function rebinds a
var using a binding form, then the value of the var is changed for all code that exe-
cutes within that binding form, including other functions that may be called. This
works in a nested manner, too. If a function were to then use another binding form
later on in the call stack, then from that point on all code would see this second value
of the var. When the second binding form completes (execution exits), the previous
binding takes over again, for all code that executes from that point onward. Look at
the contrived example in the following listing.

(def *:dynamic *eval-me* 10)
(defn print-the-var [label]
(println label *eval-me*))
(print-the-var "A:")
(binding [*eval-me* 20] ;; the first binding
(print-the-var "B:")
(binding [*eval-me* 30] ;; the second binding
(print-the-var "C:"))
(print-the-var "D:"))
(print-the-var "E:")

Running this code will print the following:

A: 10
B: 20
C: 30
D: 20
E: 10

Let’s walk through the code. First, you create a var called *eval-me* with a root bind-
ing of 10. The print-the-var function causes the A: 10 to be printed. The first binding

Scope 83

form changes the binding to 20, causes the following B: 20 to be printed. Then the sec-
ond binding kicks in, causing the C: 30. Now, as the second binding form exits, the
previous binding of 20 gets restored, causing the D: 20 to be printed. When the first
binding exits after that, the root binding is restored, causing the E: 10 to be printed.

We’ll contrast this behavior with the let form in the next section. In the mean-
time, you’ll implement a kind of aspect-oriented logging functionality for function
calls. Consider the following code.

(defn “:dynamic twice [x]
(println "original function")
(* 2 x))

(defn call-twice [y]
(twice vy))

(defn with-log [function-to-call log-statement]
(fn [& args]
(println log-statement)
(apply function-to-call args)))

(call-twice 10)

(binding [twice (with-log twice "Calling the twice function")]
(call-twice 20))

(call-twice 30)

If you run this, the output will be

original function

20

Calling the twice function
original function

40

original function

60

with-log is a higher-order function that accepts another function and a log state-
ment. It returns a new function, which when called prints the log statement to the con-
sole and then calls the original function with any arguments passed in. Note the
action at a distance behavior modification of the twice function. It doesn’t even know
that calls to it are now being logged to the console, and, indeed, it doesn’t need to.
Any code that uses twice also can stay oblivious to this behavior modification, and as
call-twice shows, everything works. Note that when the binding form exits, the orig-
inal definition of twice is restored. In this way, only certain sections of code (to be
more specific, certain call chains) can be modified using the binding form. We’ll use
this concept of action at a distance in the mocking and stubbing framework in chap-
ter 10 on unit testing with Clojure.
We’ll now examine one more property of bindings.

84

CHAPTER 3 Building blocks of Clojure

THREAD-LOCAL STATE

As we mentioned in chapter 1, Clojure has language-level semantics for safe concur-
rency. It supports writing lock-free multithreaded programs. Clojure provides several
ways to manage state between concurrently running parts of your programs, and vars
is one of them. We’ll say a lot more about concurrency and Clojure’s support for lock-
free concurrency in chapter 6. Meanwhile, we’ll look at the dynamic scope property of
vars with respect to thread-local storage.

A var’s root binding is visible to all threads, unless a binding form overrides it in a
particular thread. If a thread does override the root binding via a call to the binding
macro, that binding isn’t visible to any other thread. Again, a thread can create nested
bindings, and these bindings exist until the thread exits execution. You’ll see more
interaction between binding and threads in chapter 6.

LAZINESS AND SPECIAL VARIABLES

We mentioned Clojure’s lazy sequences in chapter 1 and talked about how functions
like map are lazy. This laziness can be a source of frustration when interplay with
dynamic vars isn’t clearly understood. Consider the following code:

(def *:dynamic *factor* 10)

(defn multiply [x]
(* x *factor*))

This simple function accepts a parameter and multiplies it by the value of *factor*,
which is determined by its current binding. You’ll collect a few multiplied numbers
using the following:

(map multiply [1 2 3 4 5])

This returns a list containing five elements: (10 20 30 40 50). Now, you’ll use a bind-
ing call to set *factor* to 20, and repeat the map call:

(binding [*factor* 20]
(map multiply [1 2 3 4 5]))

Strangely, this also returns (10 20 30 40 50), despite the fact that you clearly set the
binding of *factor* to 20. What explains this?

The answer is that a call to map returns a lazy sequence and this sequence isn’t real-
ized until it’s needed. Whenever that happens (in this case, as the REPL tries to print
it), the execution no longer occurs inside the binding form, and so *factor* reverts
to its root binding of 10. This is why you get the same answer as in the previous case.
To solve this, you need to force the realization of the lazy sequence from within the
binding form:

(binding [*factor* 20]
(doall (map multiply [1 2 3 4 5])))

This returns the expected (20 40 60 80 100). This shows the need to be cautious when
mixing special variables with lazy forms. doall is a Clojure function that forces realiza-
tion of lazy sequences, and it’s invaluable in such situations. Of course, sometimes you

3.4.2

Scope 85

don’t want to realize an entire sequence, particularly if it’s large, so you need to be care-
ful about this. Typically, the solution is to reestablish the bindings of the variable you
care about locally within the function that’s generating the elements of the sequence.

In this section, we looked at dynamic scope and the associated binding. Next, we’ll
take another look at the let form you saw earlier. Because they look so similar, we’ll
also explore the difference between the let and binding forms.

The let form revisited

We briefly explored the let form in chapter 2, where you used it to create local vari-
ables. Let’s quickly look at another example of using it:

(let [x 10
y 20]
(println "x, y:" x "," y))

Here, x and y are locally bound values. Locals such as these are local because the lexi-
cal block of code they’re created in limits their visibility and extent (the time during
which they exist). When execution leaves the local block, they’re no longer visible and
may get garbage collected.

Clojure allows functions to be defined locally, inside a lexically scoped let form.
Here’s an example:

(defn upcased-names [names]
(let [up-case (fn [name] (.toUpperCase name))]
(map up-case names)))
;=> #'user/upcased-names
(upcased-names ["foo" "bar" "baz"l)
;=> ("FOO" "BAR" "BAZ")

Here, upcased-names is a function that accepts a list of names and returns a list of the
same names, all in uppercase characters. up-case is a locally defined function that
accepts a single string and returns an upcased version of it. The .toUpperCase func-
tion (with a prefixed dot) is Clojure’s way of calling the toUpperCase member function
on a Java object (in this case a string). You’ll learn about Java interop in chapter 5.

Now, let’s examine the difference between the structurally similar let and binding
forms. To do this, you’ll first reexamine the behavior of binding via the use of *factor*,
as follows:

(def *:dynamic *factor* 10)
(binding [*factor* 20]

(println *factor¥)
(doall (map multiply [1 2 3 4 5])))

This prints 20 and then returns (20 40 60 80 100), as expected. Now, try the same
thing with a let form:
(let [*factor* 20]

(println *factor¥)
(doall (map multiply [1 2 3 4 5])))

86

3.4.3

CHAPTER 3 Building blocks of Clojure

This prints 20 as expected but returns (10 20 30 40 50). This is because, although the
let sets *factor* to 20 inside the let body, it has no effect on the dynamic scope of
the *factor* var. Only the binding form can affect the dynamic scope of vars.

Now that you know how the let form works and what it can be used for, let’s look
at a useful feature of Clojure that’s possible thanks to two things: lexical scope and the
let form.

Lexical closures

Let’s begin our exploration of what a lexical closure is by understanding what a free vari-
able is. A variable is said to be free inside a given form if there’s no binding occurrence
of that variable in the lexical scope of that form. Consider the following example:

(defn create-scaler [scale]
(fn [x]
(* x scale)))

In this example, within the anonymous function being returned, scale doesn’t appear
in any kind of binding occurrence—specifically, it’s neither a function parameter nor
created in a let form. Within the anonymous function, therefore, scale is a free vari-
able. Only lexically scoped variables can be free, and the return value of the form in
which they appear depends on their value at closure creation time. Forms that enclose
over free variables (such as the anonymous function shown previously) are called clo-
sures. Closures are an extremely powerful feature of languages such as Clojure—in
fact, even the name Clojureis a play on the word.
How do you use a closure? Consider the following code:

(def percent-scaler (create-scaler 100)

Here, we’re binding the percent-scaler var to the function object that gets returned
by the create-scaler call. This anonymous function object closes over the scale
parameter and now lives on inside the percent-scaler closure. You can see this when
you make a call to the percent-scaler function:

(percent-scaler 0.59)
;=> 59.0

This trivial example shows how closures are easy to create and use. A closure is an
important construct in Clojure (it’s no coincidence that the name of the language
sounds like the word!). It can be used for information hiding (encapsulation) because
nothing from outside the closure can touch the closed-over variables. Because Clojure
data structures are immutable (reducing the need to make things private), macros,
closures, and multimethods allow for powerful paradigms in which to create pro-
grams. It makes traditional object-oriented ideas (a la Java or C++) feel rather confin-
ing. You’ll learn about multimethods in chapter 4 and more about macros in chapter 7.
We’ll also look at closures a lot more in chapter 8, which takes a deeper look at func-
tional programming concepts.

3.5

3.5.1

Namespaces 87

Now that you understand several basic structural aspects of writing Clojure code,
we’ll address an organizational construct of Clojure: the namespace. Understanding
how to use namespaces will aid you in writing larger programs that need to be broken
into pieces for the sake of modularity and manageability.

Namespaces

When a program becomes larger than a few functions, computer languages allow the
programmer to break it up into parts. An example of this facility is the package system
in Java. Clojure provides the concept of namespaces for the same purpose. Programs
can be broken up into parts, each being a logical collection of code—functions, vars,
and the like.

Another reason why namespaces are useful is to avoid name collisions in different
parts of programs. Imagine that you were writing a program that dealt with students,
tests, and scores. If you were to then use an external unit-testing library that also used
the word test, Clojure might complain about redefinition! Such problems can be han-
dled by writing code in its own namespace.

ns macro

There’s a core var in Clojure called *ns*. This var is bound to the currently active
namespace. Thus, you can influence what namespace the following code goes under
by setting an appropriate value for this var. The ns macro does just this—it sets the
current namespace to whatever you specify. Here’s the general syntax of the ns macro:

(ns name & references)

The name, as mentioned previously, is the name of the namespace being made cur-
rent. If it doesn’t already exist, it gets created. The references that follow the name
are optional and can be one or more of the following: use, require, import, load, or
gen-class. You’ll see some of these in action in this section and then again in chapter 5,
which covers Java interop. First, let’s look at an example of defining a namespace:

(ns org.currylogic.damages.calculators)
(defn highest-expense-during [start-date end-date]
;; (logic to find the answer)

)

highest-expense-during is now a function that lives in the namespace with the name
of org.currylogic.damages.calculators. To use it, code outside this namespace
would need to make a call (directly or indirectly) to use, require, or import (if the
library is compiled into a JAR) or they can call it with its fully qualified name, which is
org.currylogic.damages.calculators/highest-expense-during. We’ll explore these
now through examples.

88

CHAPTER 3 Building blocks of Clojure

Public versus private functions

Before moving on to the next section, let’s take a quick look at private functions ver-
sus public functions. In Clojure, all functions belong to a namespace. The defn macro
creates public functions, and these can be called from any namespace. To create pri-
vate functions, Clojure provides the defn- macro, which works exactly the same, but
such functions can only be called from within the namespace they’'re defined in.
defn- is itself just a shorthand for adding the metadata { :private true} to the var.

USE, REQUIRE

Imagine that you’re writing an HTTP service that responds to queries about a user’s
expenses. Further imagine that you’re going to deal with both XML and JSON. To
handle XML, you can use the Clojure-provided XML functions that live in the
clojure.xml namespace.

As far as handling JSON is concerned, ideally you wouldn’t have to write code to
handle the format. It turns out that the Clojure ecosystem already has a great library
for this purpose called clojure.data.json.

Listing 3.6 shows what the code looks like now that you’ve selected the two libraries
you need. Remember, to get it to work, you’ll need to add the dependency to the Lein
configuration in project.clj by adding [org.clojure/data.json "0.2.1"] to the
:dependencies list. (See appendix A for more information on setting up your Leinin-
gen project and adding dependencies.) You’ll also need to restart the REPL for the
classpath to include the new dependency.

(ns org.currylogic.damages.http.expenses)
(use 'clojure.data.json)
(use 'clojure.xml)

(declare load-totals)

(defn import-transactions-xml-from-bank [url]
(let [xml-document (parse url)]
;7 more code here

))

(defn totals-by-day [start-date end-date]
(let [expenses-by-day (load-totals start-date end-date)]
(json-str expenses-by-day)))

Here, parse and json-str are functions that come from the clojure.xml and
clojure.data.json libraries. The reason they’re available is that you called use on
their namespaces. use takes all public functions from the namespace and includes
them in the current namespace. The result is as though those functions were written
in the current namespace. Although this is easy—and sometimes desirable—it often
makes the code a little less understandable in terms of seeing where such functions
are defined. require solves this problem, as shown in the following listing.

Namespaces 89

Listing 3.7 Using external libraries by calling require

(ns org.currylogic.damages.http.expenses)
(require ' (clojure.data [json :as json-1ibl))
(require ' (clojure [xml :as xml-corel))

(declare load-totals)

(defn import-transactions-xml-from-bank [url]
(let [xml-document (xml-core/parse url)]
;; more code here

))

(defn totals-by-day [start-date end-date]
(let [expenses-by-day (load-totals start-date end-date)]
(json-1lib/json-str expenses-by-day)))

require makes functions available to the current namespace, as use does, but doesn’t
include them the same way. They must be referred to using the full namespace name
or the aliased namespace using the as clause, as shown in listing 3.7. This improves
readability by making it clear where a function is actually coming from.

Finally, although these ways of using require (and use) work just fine, the idio-
matic way is shown in the next listing.

Listing 3.8 Using external libraries by calling require

(ns org.currylogic.damages.http.expenses
(:require [clojure.data.json :as json-1lib]
[clojure.xml :as xml-core]))

(declare load-totals)

(defn import-transactions-xml-from-bank [url]
(let [xml-document (xml-core/parse url)]
;; more code here

))

(defn totals-by-day [start-date end-date]
(let [expenses-by-day (load-totals start-date end-date)]
(json-1lib/json-str expenses-by-day)))

Notice how the require clauses are tucked into the namespace declaration. Similar
approaches can be used with :use and :import. In general, prefer require, because it
avoids the aliasing problems that can occur with use. For instance, if a library you use
suddenly were to introduce a function named the same as one in your namespace, it
would break your code. The use of require avoids this problem while also making
it abundantly clear where each required function comes from.

Before moving on, let’s look at an aid for when you’re working with namespaces at
the REPL.

RELOAD AND RELOAD-ALL
As described in chapter 1, typical programming workflow in Clojure involves build-
ing up functions in an incremental fashion. As functions are written or edited, the

90

3.5.2

CHAPTER 3 Building blocks of Clojure

namespaces that they belong to often need to be reloaded in the REPL. You can do
this by using the following:

(use 'org.currylogic.damages.http.expenses :reload)
(require ' (org.currylogic.damages.http [expenses :as expl]) :reload)

:reload can be replaced with :reload-all to reload all libraries that are used either
directly or indirectly by the specified library. By the way, these functions are useful
during development time, particularly when working with the REPL. When the pro-
gram is deployed to run, the namespaces are all loaded during compile time, which
happens only once.

Before wrapping up this section on namespaces, we’ll explore some options that
Clojure provides to work with them programmatically.

Working with namespaces

Apart from the convenience offered by namespaces in helping keep code modular
(and guarding from name collisions), Clojure namespaces can be accessed program-
matically. In this section, we’ll review a few useful functions to do this.

CREATE-NS AND IN-NS

create-ns is a function that accepts a symbol and creates a namespace named by it
if it doesn’t already exist. in-ns is a function that accepts a single symbol as an argu-
ment and switches the current namespace to the one named by it. If it doesn’t exist,
it’s created.

ALL-NS AND FIND-NS

The no-argument function all-ns returns a list of all namespaces currently loaded.
The find-ns function accepts a single symbol as an argument (no wildcards) and
checks to see if it names a namespace. If so, it returns true, else nil.

NS-INTERNS AND NS-PUBLICS

ns-interns is a function that accepts a single argument, a symbol that names a
namespace, and returns a map containing symbols to var mappings from the specified
namespace. ns-publics is similar to ns-interns but instead of returning a map that
contains information about all vars in the namespace, it returns only the public ones.

NS-RESOLVE AND RESOLVE

ns-resolve is a function that accepts two arguments: a symbol naming a namespace
and another symbol. If the second argument can be resolved to either a var or a Java
class in the specified namespace, the var or class is returned. If it can’t be resolved, the
function returns nil. resolve is a convenience function that accepts a single symbol
as its argument and tries to resolve it (such as ns-resolve) in the current namespace.

NS-UNMAP AND REMOVE-NS
ns-unmap accepts a symbol naming a namespace and another symbol. The mapping
for the specified symbol is removed from the specified namespace. remove-ns accepts

3.6

3.6.1

Destructuring 91

a symbol naming a namespace and removes it entirely. This doesn’t work for the
clojure.core namespace.

These are some of the functions provided by Clojure to programmatically work with
namespaces. They’re useful in controlling the environment in which certain code exe-
cutes. An example of this will appear in chapter 11, on domain-specific languages.

So far, you’ve seen a lot of the basics of Clojure and should now be in a position to
read and write programs of reasonable complexity. In the next section, you'll see a
feature that isn’t found in languages such as Java and Ruby, namely, destructuring.

Destructuring

Several programming languages provide a feature called pattern matching, which is a
form of function overloading based on structural patterns of arguments (as opposed
to their number or types). Clojure has a somewhat less general form of pattern match-
ing called destructuring. In Clojure, destructuring lets programmers bind names to
only those parts of certain data structures that they care about. To see how this works,
look at the following code, which doesn’t use destructuring:

(defn describe-salary [person]

(let [first (:first-name person)
last (:last-name person)
annual (:salary person)]

(println first last "earns" annual)))

Here, the let form doesn’t do much useful work—it sets up local names for parts of
the incoming person sequence. By using Clojure’s destructuring capabilities, such code
clutter can be eliminated:
(defn describe-salary-2 [{first :first-name

last :last-name

annual :salary}]
(println first last "earns" annual))

Here, the incoming sequence (in this case a map) is destructured, and useful parts of
it are bound to names within the function’s parameter-binding form. In fact, extracting
values of certain keys from inside maps is so common that Clojure provides an even
more convenient way of doing this. You’ll see that and more ways to destructure maps
in section 3.6.2, “Map bindings,” but before that let’s examine destructuring vectors.

Vector bindings
Vector destructuring supports any data structure that implements the nth function,
including vectors, lists, seqs, arrays, and strings. This form of destructuring consists of
a vector of names, each of which is assigned to the respective elements of the expres-
sion, looked up via the nth function. An example will make this clear:
(defn print-amounts [[amount-1 amount-2]]

(println "amounts are:" amount-1 "and" amount-2))

(print-amounts [10.95 31.45])
amounts are: 10.95 and 31.45

92

CHAPTER 3 Building blocks of Clojure

This implementation of print -amounts is short and clear: you can read the parameter list
and see that the single argument will be broken into two parts named amount-1 and
amount -2. The alternative is to use a let form inside the function body to set up amount -1
and amount -2 by binding them to the first and last values of the incoming vector.

There are several options when it comes to using vector bindings. Imagine that the
function print-amounts takes a vector that could contain two or more amounts
(instead of only two in this contrived example). The following shows how you could
deal with that situation.

USING & AND :AS
Consider the following example of destructuring:

(defn print-amounts-multiple [[amount-1 amount-2 & remaining]]
(println "Amounts are:" amount-1 "," amount-2 "and" remaining))

If you make the following call

(print-amounts-multiple [10.95 31.45 22.36 2.95])
Clojure will print the following:

Amounts are: 10.95 , 31.45 and (22.36 2.95)

As shown here, the name following the & symbol gets bound to a sequence containing
all the remaining elements from the sequence being destructured.

Another useful option is the :as keyword. Here’s another example:
(defn print-all-amounts [[amount-1 amount-2 & remaining :as alll]

(println "Amounts are:" amount-1 "," amount-2 "and" remaining)
(println "Also, all the amounts are:" all))

When you call this function as follows

(print-all-amounts [10.95 31.45 22.36 2.95])

it results in the following being printed to the console:

Amounts are: 10.95 , 31.45 and (22.36 2.95)
Also, all the amounts are: [10.95 31.45 22.36 2.95]

Notice that all, which was introduced via the :as destructuring option, was bound to
the complete argument that was passed in.

Destructuring vectors makes it easy to deal with the data inside them. What’s more,
Clojure allows nesting of vectors in destructuring bindings.

NESTED VECTORS

Suppose you had a vector of vectors. Each inner vector was a pair of data—the first
being a category of expense and the second the amount. If you wanted to print the
category of the first expense amount, you could do the following:

(defn print-first-category [[[category amount] & _ 1]

(println "First category was:" category)
(println "First amount was:" amount))

3.6.2

Destructuring 93

Running this with an example, such as

(def expenses [[:books 49.95] [:coffee 4.95] [:caltrain 2.25]])
(print-first-category expenses)

results in Clojure printing the following:

First category was: :books
First amount was: 49.95

Note that in the argument list of print-first-category, & is used to ignore the
remaining elements of the vector that you don’t care about. One thing to remember is
that destructuring can take place in any binding form, including function parameter
lists and let forms. Another thing to remember is that vector destructuring works
for any data type that supports the nth and nthnext functions. On a practical level, for
instance, if you were to implement the ISeq interface and create your own sequence
data type, you’d be able to natively use not only all of Clojure’s core functions but also
such destructuring.

Before closing out this section on destructuring, let’s look at another useful form
of destructuring binds—the one that uses maps.

Map bindings

You saw how convenient it is to destructure vectors into relevant pieces and bind only
those instead of the whole vector. Clojure supports similar destructuring of maps. To
be specific, Clojure supports destructuring of any associative data structure, which
includes maps, strings, vectors, and arrays. Maps, as you know, can have any key,
whereas strings, vectors, and arrays have integer keys. The destructuring binding form
looks similar to ones you saw earlier; it’s a map of key-expression pairs, where each key
name is bound to the value of the respective initialization expression.
Take a look at the example from earlier in the chapter:

(defn describe-salary-2 [{first :first-name
last :last-name
annual :salary}]

(println first last "earns" annual))

As noted earlier, first, last, and annual get bound to the respective values from the
map passed to describe-salary-2. Now suppose that you also want to bind a bonus
percentage, which may or may not exist. Clojure provides a convenient option in map-
destructuring bindings to handle such optional values, using the :or keyword:

(defn describe-salary-3 [{first :first-name
last :last-name
annual :salary
bonus :bonus-percentage
:or {bonus 5}}]
(println first last "earns" annual "with a" bonus "percent bonus"))

94

CHAPTER 3 Building blocks of Clojure

When called with arguments that contain all keys that are being destructured, it works
similarly to the previous case:

(def a-user {:first-name "pascal"
:last-name "dylan"
:salary 85000

:bonus-percentage 20})
(describe-salary-3 a-user)

This prints the following to the console:
pascal dylan earns 85000 with a 20 percent bonus

Here’s how it works if you call the function with an argument that doesn’t contain
a bonus:

(def another-user {:first-name "basic"
:last-name "groovy"
:salary 70000})

(describe-salary-3 another-user)

This binds bonus to the default value specified via the :or option. The output is
basic groovy earns 70000 with a 5 percent bonus

Finally, similar to the case of vectors, map bindings can use the :as option to bind the
complete hash map to a name. Here’s an example:

(defn describe-person [{first :first-name
last :last-name
bonus :bonus-percentage
:or {bonus 5}
:as p}l
(println "Info about" first last "is:" p)
(println "Bonus is:" bonus "percent"))

An example of using this function is

(def third-user {:first-name "lambda"
:last-name "curry"
:salary 95000})

(describe-person third-user)

This causes the following to be echoed on the console:

Info about lambda curry is: {:first-name lambda,
:last-name curry,
:salary 95000}
Bonus is: 5 percent

This is all quite convenient and results in short, readable code. Clojure provides a
couple of options that make it even more easy to destructure maps: the :keys, :strs,

3.7

Reader literals 95

and :syms keywords. Here’s how to use :keys by writing a small function to greet
your users:

(defn greet-user [{:keys [first-name last-namel }]
(println "Welcome," first-name last-name))

When you run this, first-name and last-name get bound to values of :first-name
and :last-name from inside the argument map. You can try it:

(def roger {:first-name "roger" :last-name "mann" :salary 65000})
(greet-user roger)

The output looks like this:

Welcome, roger mann

If your keys were strings or symbols (instead of keywords as in these examples), you’d
use :strs or :syms. Incidentally, we’ll use map destructuring in chapter 7 to add key-
word arguments to the Clojure language.

We covered various ways that Clojure supports destructuring large, complex data
structures into their components. This is a useful feature because it results in code
that’s shorter and clearer. It improves the self-documentation nature of well-written
code, because the destructuring binding tells the reader exactly what parts of the
incoming data structure are going to be used in the code that follows.

Reader literals

In programming languages, a literal is the source code representation of a fixed value.
For instance, the string "clojure" is a literal value, as is the number 42. Although
most languages have data literal support for strings and numbers, a few go further. For
instance, many have literal support for vectors and maps, expressed as something like
[1234] and {:a 1 :b2}.

Some programming languages support many more varieties of literals, but almost
no language lets you, the programmer, add more. Clojure lets you do this to a degree,
through its reader literals.

You’ve seen reader macros already. Reader literals are a way to let the reader con-
struct a specific data type for you, as defined by your data reader functions. For
instance, imagine that you were using UUIDs in your program. The easiest way to con-
struct them is via the java.util.UUID/randomUUID method:

(java.util.UUID/randomUUID)
;=> #uuid "197805ed-7aa2-4ff8-ae66-b94a838df2a8"

Imagine now in a test you want to control what UUIDs are generated. Here’s a func-
tion that accepts the first eight characters of a UUID and cans the rest:

(ns clj-in-act.ch3.reader
(:import java.util.UUID))

96

CHAPTER 3 Building blocks of Clojure

(defn guid [four-letters-four-digits]
(java.util.UUID/fromString
(str four-letters-four-digits "-1000-413f-8a7a-f11c6a9c4036")))

Now, instead of struggling with random UUIDs over which you have no naming con-
trol, you can create (or re-create) known UUIDs at will:

(use 'clj-in-act.ch3.reader)

;=> nil

(guid "abcdl234")
;=> #uuid "abcdl234-1000-413f-8a7a-fllc6a9c4036"

You can imagine such known values for universally unique identifiers (UUIDs) being
very useful when writing tests that deal with UUIDs. But calling the guid function
each time is quite noisy. It would be nice if you could clean that up. Enter Clojure’s
reader literals.

You’d create a file called data_readers.clj and put it in the root directory of the
classpath. Because you’re using Leiningen, this would be the src folder in your project
directory. In it could be a map containing your reader literal syntax and the respective
functions that handle them. For instance, the following would be the contents of
data_readers.clj with just one entry:

{G clj-in-act.ch3.reader/guid}

Now, whenever you wanted a known UUID, you could just do this:

#G "abcdl234"
;=> #uuid "abcdl234-1000-413f-8a7a-fllc6a9c4036"

This makes for far cleaner code, especially when many UUIDs are being created.
Please take notice of the # before the G to form #G. Note that although this shows how
reader literals work, it’s not okay to use unqualified syntax for your reader literals. In
other words, G by itself is unqualified by any namespace, and so it could conflict with
someone else’s, were they to name theirs the same. For this reason, the following
namespaced version is preferred:

{clj-in-act/G clj-in-act.ch3.reader/guid}

And you’d use it like this:

#clj-in-act/G "abcdl234"
;=> #uuid "abcdl1234-1000-413f-8a7a-fllc6a9c4036"

By namespacing your reader literals, you can be sure that they won’t ever collide with
anyone else’s. Reader literals should be used sparingly, but they make it particularly
easy to work with data types, and they can enhance the readability of your code.

3.8

Summary 97

Summary

This was another long chapter! We explored a few important aspects of writing code
in Clojure. We started off the chapter looking at metadata and exception handling.
Then we looked at functions, which form the basis of the language, and you saw sev-
eral ways to create and compose functions. We also examined scope—both lexical and
dynamic—and how it works in Clojure. We then showed that once programs start
getting large you can use namespaces to break up and organize them. Finally, we
looked at the destructuring capabilities of Clojure—a feature that comes in handy
when writing functions or let forms. We closed off the chapter by looking at Clo-
jure’s reader literals.

Between the previous chapter and this one, we covered most of the basic fea-
tures of the language. You can write fairly nontrivial programs with what you’ve
learned so far. The next few chapters focus on a few features that are unique to Clo-
jure—things like Java interoperability, concurrency support, multimethods, the macro
system, and more.

In the next chapter, you’ll learn about multimethods. You’ll see how inheritance-
based polymorphism is an extremely limited way of achieving polymorphic behavior
and how multimethods are an open-ended system to create your own version of poly-
morphism that could be specific to your problem domain. By combining ideas from
the next chapter with those we explored in this one, such as higher-order functions,
lexical closures, and destructuring, you can create some rather powerful abstractions.

4.1

Multimethod
polymorphism

This chapter covers

Polymorphism and its types
Clojure multimethods for ad hoc polymorphism
Using multi-argument dispatch

Querying, modifying, and creating dispatch
hierarchies

You should now know how to use Clojure’s types and functions and even write some
fairly advanced higher-order functions, but you may still be wondering how to build
larger systems with functional programming. In this chapter, you’ll learn how to
use the most powerful and flexible tool Clojure has for creating and using abstrac-
tions in large programs: multimethods.

Polymorphism and its types

Polymorphism is the ability to use multiple types as though they were the same—
that is, you can write the same code to operate on many different types. This kind
of abstraction allows you to substitute different types or implementations without
having to change all code that touches objects of those types. Polymorphism’s
ability to reduce the surface area between different parts of a program and easily

98

411

4.1.2

Polymorphism and its types 99

substitute some parts for other parts is what makes some form of it essential in larger
systems. In a certain sense polymorphism provides the ability to create your own
abstractions.

There are multiple ways to achieve polymorphism, but three are common to many
languages: parametric, ad hoc, and subtype polymorphism. We’ll concentrate on what
these look like in Clojure without multimethods but also glance at how other lan-
guages achieve the same kinds of polymorphism.

Parametric polymorphism

You’ve actually already come in contact with polymorphism in Clojure. As you saw in
chapter 2, functions such as get, conj, assoc, map, into, reduce, and so on accept
many different types in their arguments but always do the correct thing. Clojure col-
lections are also polymorphic because they can hold items of any type. This kind of
polymorphism is called parametric polymorphism because such code mentions only
parameters and not types. It’s common in dynamically typed languages because such lan-
guages by their nature don’t often mention types explicitly. But it’s also present in
some statically typed programming languages, both object-oriented languages such as
Java and C# (where it’s called generics) and functional programming (OO) languages
such as ML and Haskell.

This kind of polymorphism is usually invisible in Clojure: you just use the built-in
function and collection types, and the Clojure runtime works out what should happen
or throws an exception (or often returns nil) if the type doesn’t work with that func-
tion. Underneath the covers are Java classes and interfaces checking types and imple-
menting the polymorphism. It’s possible in Clojure to create new types that work with
Clojure built-in functions such as conj using a mix of Java interop and user-defined
Clojure types: we’ll demonstrate this technique in chapter 9.

But in Clojure if you want to create your own parametrically polymorphic func-
tions, you need to look to other kinds of polymorphism to implement them. This
seems like a curious statement: How can you implement one type of polymorphism
using another? How can a piece of code represent two kinds of polymorphism simul-
taneously? Polymorphism is often a matter of perspective: from the perspective of the
calling code (the code using your functions and types), your code can appear paramet-
rically polymorphic—that’s often precisely the goal. But internally, hidden from the
caller, your code may use a form of polymorphism that’s explicit about types. That’s
where the other two forms of polymorphism come in.

Ad hoc polymorphism

Ad hoc polymorphism is simply enumerating each possible type a function can use and
writing an implementation for each one. You can recognize this pattern in Clojure
easily: some function is called on the argument to produce a dispatch value, and cond,
case, or condp selects an implementation with a matching dispatch value to produce a

100

If find
implementation
for dispatch
value, use it
and return
result

CHAPTER 4 Multimethod polymorphism

result. Here’s an example polymorphic function that simply returns a string naming
its argument’s type:

(defn ad-hoc-type-namer [thing]
(condp = (type thing)

java.lang.String "string"

clojure.lang.PersistentVector "vector")) function appropriate to type; in this
i=> #'user/ad-hoc-type-namer case, type-specific implementation
(ad-hoc-type-namer "I'm a string") is simply string "string"
;=> "string"
(ad-hoc-type-namer [])

;=> "vector" If there’s a type this function

Call type on thing argument
to return type of thing

Dispatch for implementation of

(ad-hoc-type-namer {}) doesn’t know how to handle,

IllegalArgumentException No matching clause: class |tthrowsexcepﬂon
clojure.lang.PersistentArrayMap user/ad-hoc-type-namer (NO SOURCE FILE:2)

Ad hoc polymorphism as “function overloading”

Other languages often call ad hoc polymorphism function overloading and have some
special syntax to support this type of polymorphism. For example, in Java you can
repeat the method but annotate the argument’s types differently; the Java virtual
machine (JVM) will then perform the dispatch to the right method invisibly at compile
time. Here’s a short example equivalent to the ad-hoc-type-namer Clojure function:

public class TypeNamer extends Object {
//
public String typeName (String thing) { return "string"; }
public String typeName (PersistentVector thing) ({
return "vector";
}

Notice that this example of ad hoc polymorphism doesn’t allow calling code to “train”
the ad-hoc-type-namer function to understand new types—you can’t add new clauses
to the condp expression without rewriting the function. This property is called closed
dispatch because the list of available implementations (that is, to which you can dis-
patch) can’t be changed from the outside. But you can implement open dispatch by
keeping the implementations outside your type-naming function:

(def type-namer-implementations Pull implementations
{java.lang.String (fn [thing] "string") out into a separate
clojure.lang.PersistentVector (fn [thing] "vector")}) redef-able map
;=> #'user/type-namer-implementations
(defn open-ad-hoc-type-namer [thing]
(let [dispatch-value (type thing)]
(if-let [implementation
(get type-namer-implementations dispatch-value)]
(implementation thing)

Use a dispatch value as key
to implementation map

Polymorphism and its types 101

(throw (IllegalArgumentException.

Otherwise : : .
throw an (str "No implementation found for " dispatch-value))))))
exception i=> #'user/open-ad-hoc-type-namer
just like (open-ad-hoc-type-namer "I'm a string") Normal cases from
before j=> "string" before still work.
(open-ad-hoc-type-namer []) L
;=> "vector™" But it still doesn’t
(open-ad-hoc-type-namer {}) understand maps.

IllegalArgumentException No implementation found for class
clojure.lang.PersistentArrayMap user/open-ad-hoc-type-namer
(NO_SOURCE_FILE:5)
(def type-namer-implementations
(assoc type-namer-implementations
clojure.lang.PersistentArrayMap (fn [thing] "map")))
;=> #'user/type-namer-implementations

(open-ad-hoc-type-namer {}) open-ad-hoc-type-namer
;j=> "map" now understands maps.

So redefine implementation map, adding
a case for PersistentArrayMap.

Ad hoc polymorphism is simple and easy to understand, but it’s done from the per-
spective of the implementations that use a type, not from the perspective of the types
being used. The next form of polymorphism is more from the type’s perspective.

4.1.3 Subtype polymorphism

So far we’ve been concentrating on the functions that are polymorphic, but the types
can also be polymorphic. Subtype polymorphism is a kind of polymorphism where one
type says it can be substituted for another so that any function that can use one type
can safely use the other. Stated more simply, one type says it’s “a kind of” another type,
and code that understands more general kinds of things will automatically work cor-
rectly with more specific things of the same general kind.

Subtype polymorphism is the dominant kind of polymorphism in OO languages
and it’s expressed as class or interface hierarchies. For example, if a Person class
inherits from (or extends) an Animal class, then any method that works with Animal
objects should automatically work with Person objects too. Some dynamic OO lan-
guages also allow a form of subtype polymorphism (called structural subtyping) that
doesn’t use an explicit hierarchy or inheritance. Instead methods are designed to
work with any objects that have the necessary structure, such as properties or methods
with the correct names. Python, Ruby, and JavaScript all allow this form of subtyping,
which they call duck typing.

Clojure can use Java classes and interfaces through its Java interop features and
Clojure’s built-in types participate in Java interfaces and class hierarchies. For exam-
ple, remember in a footnote in chapter 2 we briefly mentioned that Clojure map lit-
erals may be array-map when they’re small but become hash-map when they get
larger? In Java there’s an abstract class that they share, as you can see in the follow-
ing example:

(defn map-type-namer [thing] First attempt with ad hoc polymorphism
(condp = (type thing) checks each type explicitly.

102 CHAPTER 4 Multimethod polymorphism
clojure.lang.PersistentArrayMap "map"
clojure.lang.PersistentHashMap "map")) Notice duplicate
;=> #'user/map-type-namer implementation
(map-type-namer (hash-map))
;=> llmap n
(map-type-namer (array-map))
;=> "map" There was a
(map-type-namer (sorted-map)) case missed.
IllegalArgumentException No matching clause: class
clojure.lang.PersistentTreeMap com.gentest.ConcreteClojureClass/map-type-
namer (NO SOURCE FILE:2)
(defn subtyping-map-type-namer [thing] Second attempt
(cond using subtype
—> (instance? clojure.lang.APersistentMap thing) "map" polymorphism

:else (throw (IllegalArgumentException.
(str "No implementation found for ") (type thing)))))
;=> #'user/subtyping-map-type-namer
(subtyping-map-type-namer (hash-map))

; => n map n

(subtyping-map-type-namer (array-map)) .

;=> "map" Function now works
(subtyping-map-type-namer (sorted-map)) foranytmnglnaphk&
;=> llmap n

Use instance? to query Java’s class
hierarchy; APersistent-Map is Java
superclass of all maplike things in Clojure

By writing code that knows how to use APersistentMap, you know it works with any
subtype using your single implementation; it even works for types that don’t exist yet
as long as they’ll extend APersistentMap.

Clojure also offers some ways to create subtypes of your own using multimethod
hierarchies (which we’ll look at later in this chapter) or protocols (which we’ll discuss
in chapter 9), but beyond this Clojure offers no rigid notion of subtyping. The reason
is that subtyping, while powerful because it allows you to write fewer implementations
of functions, can also be restraining if applied too broadly because there’s often no
one, single, universally applicable arrangement of types. For example, if you’re writ-
ing geometry code, it may be simpler for some functions to see a circle as a special
case of an ellipse but for others to view an ellipse as a special case of a circle. You may
also have a single thing belong to multiple, nonoverlapping type hierarchies at the
same time: a person is a kind of material body to a physicist but a kind of animal to a
biologist. More importantly, Clojure is focused on data and values, not types: the
programming-language type used to contain some information (such as a map, list, or
vector) is independent of the problem-domain type (such as animal, vegetable, or min-
eral), and it’s the latter that should be the focus. But this means your own code, and
not your programming language, will need to distinguish somehow between maps
that represent animals and maps that represent minerals or to know that an animal
can be represented with either a list form or a map form.

4.2

421

422

Polymorphism using multimethods 103

Multimethods provide features to express both ad hoc and subtype polymorphism
and even to express multiple different kinds of subtype polymorphism at the same
time. Let’s leave polymorphic theory behind us now and look more concretely at how
multimethods can help you write polymorphic code.

Polymorphism using multimethods

For the rest of the chapter we’re going to focus exclusively on how to use multim-
ethods to write polymorphic code, specifically to meet the needs of a hypothetical
expense-tracking service you’re building.

Life without multimethods

Consider the situation where the expense-tracking service you’ve written has become
popular. You've started an affiliate program where you pay referrers if they get users to
sign up for your service. Different affiliates have different fees. Let’s begin with the
case where you have two affiliates: mint.com and google.com.

You'd like to create a function that calculates the fee you pay to the affiliate. For the
sake of illustration, let’s decide you’ll pay your affiliates a percentage of the annual sal-
ary the user makes. You’ll pay Google 0.01%, Mint 0.03%, and everyone else 0.02%.
You’ll write this without polymorphism first (you’ll accept percentage values as straight
numbers and you’ll translate them by multiplying by 0.01 within the function):

(def example-user {:login "rob" :referrer "mint.com" :salary 100000})
;=> #'user/example-user
(defn fee-amount [percentage user]

(with-precision 16 :rounding HALF_ EVEN Using BigDecimal
(* 0.01M percentage (:salary user)))) <FW because dealing
;=> #'user/fee-amount with money
(defn affiliate-fee [user]
(case (:referrer user)
"google.com" (fee-amount 0.01M user)
"mint.com" (fee-amount 0.03M user)

(fee-amount 0.02M user)))
;=> #'user/affiliate-fee
(affiliate-fee example-user)
;=> 30.0000M

You should be able to recognize affiliate-fee as an example of closed dispatch, ad
hoc polymorphism, which uses :referrer as a dispatch function. It also has a default
implementation to use if no match is found.

The biggest problem with the affiliate-fee function is the closed dispatch: you
can’t add new affiliates without rewriting affiliate-fee. Now let’s look at how you’d
solve this problem with multimethods.

Ad hoc polymorphism using multimethods

Before you implement the same functionality using multimethods, let’s take a moment
to understand their syntax. Multimethods use a pair of macros: defmulti defines a

104

Notice
defmethod
doesn’t
return a var

CHAPTER 4 Multimethod polymorphism

multimethod and how to produce a dispatch value with which to find an implemen-
tation. The defmethod macro defines an implementation for a specific dispatch
value. In other words, defmulti acts as the first clause of a case expression, and each
defmethod acts as a single test-and-result pair of a case expression. This is what
affiliate-fee looks like as a multimethod:

(defmulti affiliate-fee (fn [user] (:referrer user)))
;=> #'user/affiliate-fee
(defmethod affiliate-fee "mint.com" [user]
(fee-amount 0.03M user))
;=> #<MultiFn clojure.lang.MultiFn@8b3cfl2>
(defmethod affiliate-fee "google.com" [user]
(fee-amount 0.01M user))
;=> #<MultiFn clojure.lang.MultiFn@8b3cfl2>
(defmethod affiliate-fee :default [user]
(fee-amount 0.02M user))

Like (defn affiliate-
fee-dispatch [user]
(:referrer user))

Like a clause of case: (case
(affiliate-fee-dispatch
user) "mint.com" (fee-
amount 0.03M user))

;j=> #<MultiFn clojure.lang.MultiFn@8b3cfl2> Default case; multimethods use
(affiliate-fee example-user) :default as a dispatch value when
;=> 30.0000M no other defmethod matches.
DEFMULTI

Multimethods are declared using the defmulti macro. Here’s a simplified general
form of this macro:

(defmulti name docstring? attr-map? dispatch-fn & options)

name is the name of the multimethod used to invoke it and to add implementations
using defmethod. docstring? and attr-map? are optional documentation and meta-
data arguments—the same as in defn. The required dispatch-fn function is a regular
Clojure function that accepts the same arguments that are passed in when the multi-
method is called. The return value of dispatch-£n is the dispatch value used to select
an implementation. The options are key-value pairs to provide optional specifica-
tions. There are only two options: :default, to select a new default dispatch value,
and :hierarchy, to use a custom dispatch value hierarchy. Here’s an example with a
custom default:
defmulti returning

nil means it wasn’t

(defmulti affiliate-fee :referrer :default "*") ¢
redefined; see sidebar.

;=> nil
(ns-unmap 'user 'affiliate-fee)
;=> nil Dispatch function
(defmulti affiliate-fee :referrer :default "*") :referrer, option
;=> #'user/affiliate-fee :default "*'
(defmethod affiliate-fee "*" [user]

(fee-amount 0.02M user)) ﬁ Now default case

;=> #<MultiFn clojure.lang.MultiFn@7eafa7a7>

(affiliate-fee example-user)

;=> 20.0000M Default case; "mint .com"
case is gone because of
redefined affiliate-fee.

Polymorphism using multimethods 105

A few notes before we continue. First, notice that you can use a plain keyword :referrer
as a dispatch function: this is a common idiom where the argument to the defmethod
is always a map and you want to dispatch by the value of one of its keys. Second, because
you had to redefine the defmulti, all the existing defmethods were lost: see the follow-
ing sidebar for more discussion of the issues surrounding redefining a defmulti. We’ll
talk about the :hierarchy option later: it’s used for subtype polymorphism.

Redefining a defmulti

A big gotcha in Clojure is that the defmulti macro uses defonce to define the var
that holds the multimethod. This means that if you try to change a multimethod’s dis-
patch function or options, your reasserted defmulti will have no effect and you’ll
continue to use the old multimethod. This rarely happens in normal running code but
can cause considerable hair pulling at the read-evaluate-print loop (REPL) where
exploratory change and revision is common.

A redefined defmulti will return nil instead of a var like #'user/mymulti. If you
notice the nil (or if you don’t but your multimethod feels like it’s not accepting
your changes), use (ns-unmap 'namespace 'defmultiname) before reasserting the
defmulti form as demonstrated in the previous code example.

Another related gotcha is that a redef -ed multimethod will lose all of its defmethod
implementations. This is because multimethods are a rare example of mutation in
Clojure: each defmethod is actually mutating the original object created by defmulti
by adding new items to its dispatch table. (This is why defmulti uses defonce in
the first place: so mutations to its dispatch table aren’t lost by accidental redefini-
tion.) By creating a new multimethod all the old methods were cleared out. You can
see and manipulate this dispatch table using methods and remove-method, which
we'll discuss shortly.

DEFMETHOD
Implementations of a multimethod declared with defmulti are added with the

defmethod macro, which looks like a normal (docstring-less) defn except with a dis-
patch value between the name and the arguments:

(defmethod multifn dispatch-value & fn-tail)

This creates a concrete implementation for a previously defined multimethod. The
multifn identifier should match the name in the previous call to defmulti. The
dispatch-value will be compared with the return value of the dispatch-fn from ear-
lier to determine which method will execute. The fn-tail is the body of the imple-
mentation and accepts anything you’d put inside a (fn ..) form, including argument
destructuring. Normally this is just an argument vector followed by a function body,
but multiple arities are okay, too:

(defmethod my-multi :default [arg] "body")

(defmethod my-many-arity-multi :default
([l "no arguments")

106 CHAPTER 4 Multimethod polymorphism

([x] "one argument")
([x & etc] "many arguments"))

defmethod will create a normal function from its function body and mutate the original
defmulti object to add this function to its dispatch map under the dispatch-value key.
You can inspect the dispatch map of a multimethod using the functions get -method and
methods. get-methods takes a multimethod and a dispatch value and returns an imple-
mentation function for that value using the same dispatch logic as calling the multim-
ethod directly. methods just returns the entire dispatch map for a multimethod. Let’s see
an example using the affiliate-fee multimethod from earlier:

Get implementation
for dispatch value

First add back methods
lost after redef

(defmethod affiliate-fee "mint.com" [user]
(fee-amount 0.03M user))
;=> #<MultiFn clojure.lang.MultiFn@7eafa7a7>
(defmethod affiliate-fee "google.com" [user]
(fee-amount 0.01M user))
;=> #<MultiFn clojure.lang.MultiFn@7eafa7a7>
(methods affiliate-fee)
;=> {"mint.com" #<user$eval8ll7$fn 8118 user$eval8ll7$fn 8118@36e433fl>,
nkn #cuser$eval6380$fn 6381 user$eval6380$fn 6381l@2ebfdl2f>,
"google.com" #<user$eval8l23$fn 8124 user$eva18123$fn__8124@2ad71f9f>}
—> (get-method affiliate-fee "mint.com")
;=> #<user$eval8ll7$fn 8118 user$eval8ll7$fn 8118@36e433fl> get-method
(get (methods affiliate-fee) "example.org") FntjUStget:
.=> nil |t.understan.ds
(get-method affiliate-fee "example.org") dispatch logic.
;=> #<user$eval6380$fn 6381 user$eval6380$fn 6381l@2ebfdl2f>
((get-method affiliate-fee "mint.com") example-user) QW

Get full dispatch map
for multimethod

;=> 30.0000M Entries in dispatch map

are normal functions.
The nmeEn

implementation

You can also remove multimethod implementations using remove-method and remove-
all-methods. remove-method removes the implementation for a dispatch value. Note
that unlike get -method, the dispatch value to remove must be an exact match. Finally,
remove-all-methods removes all implementations of a multimethod.

We’ve covered the basics of multimethods for ad hoc polymorphism using a single
dispatch value to select a matching implementation. Now you’re going to see how
multimethods can consider multiple dispatch values to select an implementation.

4.2.3 Multiple dispatch

Imagine your expense-tracking service is even more successful than before and the
affiliate program is working great. So great, in fact, that you’d like to pay more profit-
able users a higher fee. This would be a win-win situation for the affiliate network and

Polymorphism using multimethods 107

your service. Here are a few more example users with a :rating key to indicate the
user’s profit rating:

(def user-1 {:login "rob" :referrer "mint.com" :salary 100000
:rating :rating/bronze})

(def user-2 {:login "gordon" :referrer "mint.com" :salary 80000
:rating :rating/silver})

(def user-3 {:login "kyle" :referrer "google.com" :salary 90000
:rating :rating/gold})

(def user-4 {:login "celeste" :referrer "yahoo.com" :salary 70000

:rating :rating/platinum})
Now let’s consider the business rules shown in table 4.1.

Table 4.1 Affiliate fee business rules

Affiliate Profit rating Fee (% of salary)
mint.com Bronze 0.03
mint.com Silver 0.04
mint.com Gold/platinum 0.05
google.com Gold/platinum 0.03

From the rules it’s clear that there are two values based on which fee percentage is cal-
culated: the referrer and the profit rating. In a sense, the combination of these two
values is the affiliate fee type. Because you’d like to dispatch on this virtual type, com-
prising two values, you’ll create a function that computes the pair:

(defn fee-category [user]
[(:referrer user) (:rating user)])
;=> #'user/fee-category
(map fee-category [user-1 user-2 user-3 user-4])

;=> (["mint.com" :rating/bronze]
["mint.com" :rating/silver]
["google.com" :rating/goldl]
["yahoo.com" :rating/platinum])

You’ll use fee-category as your dispatch function for another multimethod, profit-
based-affiliate-fee:

(defmulti profit-based-affiliate-fee fee-category) Multimethod
(defmethod profit-based-affiliate-fee ["mint.com" :rating/bronze] uses fee-
[user] (fee-amount 0.03M user)) category
(defmethod profit-based-affiliate-fee ["mint.com" :rating/silver] function to
[user] (fee-amount 0.04M user)) create
(defmethod profit-based-affiliate-fee ["mint.com" :rating/gold] dispatch
[user] (fee-amount 0.05M user)) values.

(defmethod profit-based-affiliate-fee ["mint.com" :rating/platinum]
[user] (fee-amount 0.05M user))

(defmethod profit-based-affiliate-fee ["google.com" :rating/gold]
[user] (fee-amount 0.03M user))

108 CHAPTER 4 Multimethod polymorphism

(defmethod profit-based-affiliate-fee ["google.com" :rating/platinum]
[user] (fee-amount 0.03M user))
(defmethod profit-based-affiliate-fee :default Even with muItipIe dispatch, default

luser] (fee-amount 0.02M user)) value is always a single value, not
[:default :default].

This reads a lot like the table with business rules, and adding new rules is still quite easy
and doesn’t involve modifying existing code. But how does this code work in practice?

(map profit-based-affiliate-fee [user-1 user-2 user-3 user-4])

;=> (30.0000M .
32.0000M 4—‘ mint.com bronze gets
j mint.com silver gets 0.03% of $100,000.

27.0000M

14.0000M) 0.04% of 580,000
yahoo.com platinum gets google.com gold gets
default 0.02% of $70,000. 0.04% of $90,000.

All the business rules in table 4.1 are applied and the default fee is used if there’s no
affiliate program with the user’s combination of referrer and rating. But notice that
you did have to duplicate some code: the business rules treat gold and platinum profit
ratings the same, but you still had to write a separate method (with the same imple-
mentation) for each. Duplicate defmethods that differ only by dispatch value are a
strong hint that those dispatch values are the same kind of thing. This isn’t something
ad hoc polymorphism can help you with, but subtype polymorphism is great for
removing redundant implementations. Fortunately, multimethods can make use of
subtype polymorphism, as you’ll see in the next section.

4.2.4 Subtype polymorphism using multimethods

Your profitrating infrastructure is in place, but you still have some duplicated code
you’d like to get rid of: namely, your implementations for the gold and platinum rat-
ings of mint.com and google.com are the same. When you point this out to the busi-
ness folks, they elaborate that the ratings are actually in a hierarchy: bronze and silver
are basic-level and gold and platinum are premier-level profit ratings. In other words,
bronze and silver are both “kinds of” basic profit ratings, and gold and platinum are
“kinds of” premier profit ratings, as illustrated in figure 4.1.

Profit rating

AN

Basic Premier

Figure 4.1 The hierarchy of profit
rating levels as explained by the

business folks. You can use this
external-facing classification to
simplify your code by defining a

Bronze Silver Gold Platinum dispatch hierarchy reflecting this
structure.

Polymorphism using multimethods 109

This talk of “kinds” is a big hint that you’re dealing with subtype polymorphism here.
Multimethods enable you to build and query your own hierarchies of types (repre-
sented by namespaced keywords) using a family of functions: derive, underive, isa?,
parents, ancestors, and descendants.

BUILDING AND QUERYING TYPE HIERARCHIES
The derive function is used to establish a “kind of” or subtype relationship between
two types. Multimethods represent types as keywords or Java classes.

The ordinary form of derive takes two arguments: a keyword representing a type
and another keyword representing the parent. (You can remember this argument
order by thinking “derive x fromy,” “
argument form, derive will mutate a global hierarchy to establish the type relation-

ship. Because you’re mutating a global hierarchy, derive requires that your keywords

x is a kind of y,” or “x is a child of y.”) In the two-

have a namespace to reduce the chance of name collisions. (This requirement is
relaxed for independent hierarchies, as explained later.) Here’s an example imple-
menting the hierarchy described in figure 4.1:

(derive :rating/bronze :rating/basic) <1—{ ?h::l]t- :::;:i::lil;eolcsczrl:i:tg
;j=> nil :
(derive :rating/silver :rating/basic) Other nils omitted
(derive :rating/gold :rating/premier) for brevity.

(derive :rating/platinum :rating/premier)

(derive :rating/basic :rating/ANY) Use : rating/ANY as
(derive :rating/premier :rating/ANY) <F4W roottypefora"raﬁngs

If you make a mistake or simply want to change the hierarchy, you can use the underive
function to remove type relationships: it takes the same arguments as derive.

Now that you’ve created your hierarchy, how do you see it? The most important
function is isa?: this is the function multimethods use internally to determine what
method to select for a dispatch value. You can also use parents, ancestors, and
descendants to inspect the hierarchy more directly. Here’s an example using the hier-
archy you just made:

isa? understands transitive

(isa? :rating/gold :rating/premier) : :
relationships, too.

;j=> true

(isa? :rating/gold :rating/ANY) Types are always

i=> true kinds of themselves.

(isa? :rating/ANY :rating/premier)

i=> false parents returns a set (not a single item)
(isa? :rating/gold :rating/gold) because it’s legal to have multiple parents.
;j=> true

(parents :rating/premier) J ancestors returns parents

;=> #{:rating/ANY} and their parents, etc.

(ancestors :rating/gold)

;=> #{:rating/ANY :rating/premier} QJ descendants returns children

(descendants :rating/ANY) and their children, etc.

;=> #{:rating/basic :rating/bronze :rating/gold :rating/premier :rating/
silver :rating/platinum}

110

First
remove
duplicate
methods

CHAPTER 4 Multimethod polymorphism

Multimethod interop with Java hierarchies

Multimethods understand Java class and interface hierarchies for the purposes of
dispatch, and all the functions described here (isa?, parents, and so on) work with
Java types. But you can’t use derive to modify the Java class hierarchy! But what
you can still do is group Java types under some non-Java parent type, for example
(derive java.lang.String ::stringy-things).

Even though isa? works with Java types, you should use the much faster instance?
instead if you don’t need to consider the multimethod hierarchy.

Now you can use this hierarchy in a simple example multimethod that returns an
appropriate greeting depending on a user’s profit rating:

(defmulti greet-user :rating)
;=> #'user/greet-user
(defmethod greet-user :rating/basic [user]
(str "Hello " (:login user) \.))
;=> #<MultiFn clojure.lang.MultiFn@d8lfe85>
(defmethod greet-user :rating/premier [user]
(str "Welcome, " (:login user) ", valued affiliate member!")
;=> #<MultiFn clojure.lang.MultiFn@d8lfe85>
(map greet-user [user-1 user-2 user-3 user-4])
;=> ("Hello rob." "Hello gordon." "Welcome, kyle, valued affiliate member!"
"Welcome, celeste, valued affiliate member!")

Notice that even though you supplied only two method implementations, the multi-
method was able to correctly handle all four profit ratings by considering the subtype
relationships you defined using derive. Can this help you remove some duplicate
code from the profit-based-affiliate-fee methods? Yes!

SUBTYPES AND MULTIPLE-DISPATCH

Multimethods let you combine multiple-dispatch and type hierarchies. If you return a
vector from your dispatch function, the multimethod will consider each item in the
vector separately with isa? when trying to find a matching implementation. So you
can finally clean up your profit-based-affiliate-fee code to remove those annoy-
ing duplicates:

(remove-method profit-based-affiliate-fee ["mint.com" :rating/gold])

7=> #<MultiFn clojure.lang.MultiFn@5d98c6£3>

(remove-method profit-based-affiliate-fee ["mint.com" :rating/platinum])

;=> #<MultiFn clojure.lang.MultiFn@5d98c6£f3>

(remove-method profit-based-affiliate-fee ["google.com" :rating/gold])

;=> #<MultiFn clojure.lang.MultiFn@5d98c6£3>

(remove-method profit-based-affiliate-fee ["google.com" :rating/platinum])

7=> #<MultiFn clojure.lang.MultiFn@5d98c6£3>

(defmethod profit-based-affiliate-fee ["mint.com" :rating/premier]

[user] (fee-amount 0.05M user))

;=> #<MultiFn clojure.lang.MultiFn@5d98c6£3> Now add two methods matching

:rating/premier to replace
previous four

Polymorphism using multimethods 111

(defmethod profit-based-affiliate-fee ["google.com" :rating/premier]
[user] (fee-amount 0.03M user))
;=> #<MultiFn clojure.lang.MultiFn@5d98c6£f3>
(map profit-based-affiliate-fee [user-1 user-2 user-3 user-4])
;=> (30.0000M 32.0000M 27.0000M 14.0000M)
ﬁ You do!

Check if you get
same results

Not only have you removed some duplicate code, but you’ve also captured more pre-
cisely the intention of the business rules and protected the code against future
changes to the profitrating levels. So subtype polymorphism allowed you to reduce
code duplication by sharing implementations (something it’s especially good at), but
it also introduces some complexity that you’ll learn to manage in the next section.

Multiple-dispatch and :default

A subtlety of the :default case is that it's used only when an entire dispatch fails;
it’s not substituted for individual values of a multiple-dispatch vector. The reason is
that (isa? x :default) is never true for any x (except :default itself), so you can’t
specify a dispatch value like ["mint.com" :default] and expect it to match when
no other more-specific rating matches. Instead, you must explicitly link the value to
some base type, as you did with :rating/ANY, and use it as your fallback case in
multiple dispatch.

This also means that you can’t specify a default case for the :referrer slot (for
example, "mint.com") because you’re using strings. You need to call (derive
"mint.com" :referrer/ANY) to create a default case but derive only works with key-
words, symbols, and classes, not strings. A workaround is either to create a keyword
dynamically in the dispatch function (for example, (keyword "site" (:referrer
user))) and match on that instead or to have the :default implementation invoke
(get-method profit-based-affiliate-fee [:site/ANY (:rating user)]) to
force a specific dispatch value and call the matching method it returns.

RESOLVING METHOD AMBIGUITIES
There’s a downside to using subtyping with multiple dispatch: it introduces the possi-

bility of ambiguity. This is best demonstrated by an example. Suppose your expense-
tracking service has gotten so popular that it has expanded to become a massive
multiplayer online role-playing game. You still have your users and profit ratings, but
now you want users to be able to size up other users before going into battle. Here’s a
first draft of the size-up multimethod, which takes two users—an observer and an
observed—and returns a description of the observer for the observed:

(defmulti size-up (fn [observer observed]

[(:rating observer) (:rating observed)])) Everyone
;=> #'user/size-up should look
(defmethod size-up [:rating/platinum :rating/ANY] [observed] scrawny to

(str (:login observed) " seems scrawny.")) platinum

;=> #<MultiFn clojure.lang.MultiFn@50e0a48d> users.

112

But what
happens if
a platinum
user looks
at another
platinum
user?

Now
Celeste
shimmers!

CHAPTER 4 Multimethod polymorphism

(defmethod size-up [:rating/ANY :rating/platinum] [_ observed] <+
(str (:login observed) " shimmers with an unearthly light."))

;=> #<MultiFn clojure.lang.MultiFn@50e0a48d>

(size-up {:rating :rating/platinum} user-4)

IllegalArgumentException Multiple methods in multimethod 'size-up' match

dispatch value: [:rating/platinum :rating/platinum] -> [:rating/ANY :rating/

platinum] and [:rating/platinum :rating/ANY], and neither is preferred

clojure.lang.MultiFn.findAndCacheBestMethod (MultiFn.java:182)

Platinum users should look
imposing to everyone.

The problem here is that the type system, combined with multiple dispatch, intro-
duces an ambiguity about which method implementation should be used: Do platinum
users look scrawny to other platinum users, or do they shimmer with an unearthly
light like themselves?

Suppose you decide that platinum users should shimmer to other platinum users,
not look scrawny. There are a few ways you could remove the ambiguity. First, you
could avoid the use of :rating/ANY in the scrawny defmethod and instead enumerate
every rating that isn’t platinum. But this means you’ve duplicated code again: you
need a defmethod for at least :rating/basic and :rating/gold, and they both will
have the same body. Further, you need to remember to add more cases if more profit
ratings are added in the future. A second possibility is to add an explicit [:rating/
platinum :rating/platinum] method, but this also means you’ll need to duplicate
the “shimmers” code.

Clojure offers a third possibility: you can explicitly prefer one implementation over
another using the prefer-method function. This function takes the multimethod and
a pair of dispatch values and instructs the multimethod to prefer the first dispatch
value over the second when there’s an ambiguity between the two. Here’s an example:

: . . . When size-up can’t
(prefer-method size-up [:rating/ANY :rating/platinum] decide between these

[:rating/platinum :rating/ANY])
;=> #<MultiFn clojure.lang.MultiFn@50e0a48d>
(size-up {:rating :rating/platinum} user-4)
;=> "celeste shimmers with an unearthly light."
(prefers size-up)
;=> {[:rating/ANY :rating/platinum] #{[:rating/platinum :rating/ANY]}}

two dispatch values,
prefer first one.

prefers shows all of a
multimethod’s preferences.

Using prefer-method you’re able both to avoid duplicate code and to future-proof it
against modifications to the rating hierarchy.

You've now learned all there is to know about multimethods except for one last
rarely used feature, which we’ll examine next.

USER-DEFINED HIERARCHIES
All the multimethods we’ve defined and the hierarchies you've derived so far have

been inspecting and mutating a single, program-wide global hierarchy. In most cases

Need to
redef to
“mutate”
hierarchy

isa? can
also take a
hierarchy ...

Polymorphism using multimethods 113

this is fine, but Clojure’s multimethods also allow you to create your own blank hierar-
chy and use it explicitly instead of using the invisible global hierarchy. Most of the
macros and functions we’ve introduced in this chapter also accept an optional hierar-
chy argument, which you can create with the make-hierarchy function. Here’s a
whirlwind tour of its use:

(def myhier (make-hierarchy)) Hierarchies are just
;=> #'user/myhier ordinary maps.
myhier Three-arg derive
;j=> {:parents {}, :descendants {}, :ancestors {}} doesn’t return nil.
(derive myhier :a :letter)
;j=> {:parents {:a #{:letter}}, :ancestors {:a #{:letter}}, .

:descendants {:letter #{:a}}} Unlike two-arg
myhier derive it

9.

;=> {:parents {}, :descendants {}, :ancestors {}} doesn’t mutate.

(def myhier (-> myhier

(derive :a :letter) QT Notice keywords

(derive :b :letter) without namespaces
(derive :c :letter)))

;=> #'user/myhier

(isa? myhier :a :letter) - s can parents,
ancestors, descendants,

=> true X
and underive

(parents myhier :a)
;=> #{:letter}
(defmulti letter? identity :hierarchy #'myhier) defmulti has a
;=> #'user/letter? :hierarchy option
(defmethod letter? :letter [_] true) that takes a var.

;=> #<MultiFn clojure.lang.MultiFn@l17c26ef7>

(letter? :d)

IllegalArgumentException No method in multimethod 'letter?' for dispatch
value: :d clojure.lang.MultiFn.getFn (MultiFn.java:160)

(def myhier (derive myhier :d :letter))

;=> #'user/myhier Taking a var allows
(letter? :d) mutation.
;=> true

There are a few important differences between this code with an explicit hierarchy
and the code you’ve been writing up until now using the global hierarchy. First, you
call make-hierarchy to create a new (empty) hierarchy. A hierarchy is really just a
map with three familiar-looking keys—it’s not anything special. Second, derive and
underive have three-argument forms that accept a hierarchy, but these don’t return
nil like their two-argument forms. Instead, they return a new hierarchy map and don’t
mutate the existing map. Third, notice that the three-argument form of derive
doesn’t require namespaced keywords; because the hierarchy is empty and isolated
there isn’t as much concern about type name collisions as there is in the global
namespace. Fourth, a multimethod is created to use a custom hierarchy by calling
defmulti with the :hierarchy keyword option. You must pass the hierarchy as a vas
not a plain map. It would be impossible to change the type hierarchy later if you were
to pass a plain (immutable) map. Instead you pass a var containing the hierarchy map,

114

4.3

CHAPTER 4 Multimethod polymorphism

and the multimethod derefs it every time it needs to call isa?. This is demonstrated
in the previous code by adding the :d type to the hierarchy after defining the method:
note that the change is seen by letter?.

Why would you ever want to create your own hierarchy? There are two primary rea-
sons. The first is hierarchy isolation: if you use an independent hierarchy, you’re never
in danger of someone’s code accidentally changing your type relationships while manip-
ulating the global hierarchy. In fact, it’s even possible to make your type hierarchy com-
pletely nonextensible simply by making it private to your library and inaccessible to
other namespaces (for example, by using *:private or a closure). This allows other
code to add their own methods but not their own #ypes, which may occasionally be desir-
able. Because hierarchies are isolated, derive’s three-argument form also relaxes the
requirement that your types have a namespace, so you can name your types bare key-
words like :letter. Note, however, that your own hierarchies are not isolated from the
Java type hierarchy! (isa? (make-hierarchy) java.lang.String java.lang.Object)
still returns true!

The second reason you might want your own hierarchy is if multiple methods share
the same types but dispatch according to different (possibly contradictory) type hierar-
chies. A classic example is circles and ellipses: an area function may be able to say that a
:circleis a kind of :ellipse and use the same formula (27wh) to calculate the area for
both, but a stretch function may need to make the opposite assumption and imple-
ment ellipse-stretching as a special case of circle-stretching.' Separate multimethod hier-
archies are used very rarely in Clojure, but they’re available if you need them.

Summary

We began this chapter by defining polymorphism as the ability to use multiple types as
though they were the same—to substitute one type for another without changing
code. We then distinguished three different kinds of polymorphism: parametric, ad
hoc, and subtype. Parametric polymorphism is where the types aren’t mentioned at
all; ad hoc is where multiple implementations name types explicitly but provide a
parametric interface; subtype is where types are placed in a hierarchy so they can
share implementations transparently.

We then introduced multimethods in the context of ad hoc polymorphism and
showed how they enable explicit mapping of types to implementations (via a dispatch
function and value) but are still extensible with new types from the outside (called
open dispatch). We then showed how you could dispatch with multiple different values
at the same time (called multiple dispatch).

We then discussed how multimethods have subtype polymorphism features as
well because they allow you to build your own type hierarchies with derive that are

! The discussion of whether a circle is an ellipse or vice versa is so classic in subtype polymorphism and object-
oriented programming that it has its own name: the circle—ellipse problem; see http://en.wikipedia.org/wiki/
Circle-ellipse_problem.

http://en.wikipedia.org/wiki/Circle-ellipse_problem
http://en.wikipedia.org/wiki/Circle-ellipse_problem

Summary 115

matched with isa?. You were able to combine subtype polymorphism with multiple
dispatch to eliminate duplicated code. But this introduced the possibility of dispatch
values with ambiguous method implementations, but you were able to resolve these
ambiguities using prefer-method. Finally, you saw that it’s possible for each multi-
method to have its own independent type hierarchy.

This chapter covered an interesting feature of Clojure, and using it in the right sit-
uation will make your programs richer. The next chapter will focus on another great
capability of Clojure: seamless interoperability with Java code.

Exploring Clojure
and Java interop

This chapter covers

® |ntroducing Clojure’s Java interop functionality
m Calling Java from Clojure

= Compiling Clojure down to bytecode

m Calling Clojure from Java

Java is the new COBOL. This pronouncement has been made year after year for a
few years now, but it hasn’t quite come to pass. Java was originally designed in the
early 1990s, was officially released in the mid-1990s, and went on to become one of
the most significant technologies of its time. Today, the Java stack is one of the most
popular in the industry. It isn’t going away anytime soon.

With the sheer amount of Java code in production (and more being written
every day), no modern programming language can hope to succeed without
being able to interoperate with it. Rich Hickey chose well when he picked the
Java virtual machine (JVM) to host the Clojure language. Not only does Clojure
benefit from the state-of-the-art technology (raw performance, HotSpot, just-in-
time compilation, adaptive optimization, garbage collection, and more), but it
also makes the goal of seamless Java interoperability easier to achieve. The result

116

5.1

511

Calling Java from Clojure 117

is that Java interop with Clojure is both elegant and easy to use. We’ll explore this
facility in this chapter.

We’ll start out by demonstrating how to use Java classes from Clojure code. Clojure
provides a lot of convenient macros that make the resulting code simple and clean.
After that, we’ll show how Clojure code can be converted into Java bytecode via the
compilation facility provided by Clojure. Before wrapping up this chapter, we’ll take a
brief look at how Clojure code can be called from Java programs.

This chapter talks about several macros that are provided by the Clojure lan-
guage. You've seen a few macros already, even though we haven’t examined them in
detail yet. For now, you can think of these as features of the language itself. Once
you learn how to write your own macros in chapter 7, you’ll be able to appreciate
the elegance of the macros from this chapter even more. In any case, by the end of
this chapter, you’ll have mastered another extremely powerful feature of Clojure—
that of being able to use the extensive set of Java libraries out there from within your
Clojure programs.

Calling Java from Clojure

The availability of a good set of standard libraries can make or break a programming
language. This is why Clojure has such a great advantage; being hosted on the JVM
means that programs have instant access to literally thousands of libraries and frame-
works. It’s a bit like having the privilege of living most of your programming life in the
advanced environment of Clojure but being able to cherry-pick any Java library to use
when you need to.

You can do pretty much everything you need to do in Java from within Clojure.
We’ll explore the most common tasks you might need to do in the following sections,
including the following:

= Creating new instances of Java classes

= Accessing methods and fields of Java objects

= Implementing interfaces and extending classes
= Compiling Clojure code

So let’s begin our exploration of Clojure’s Java interop features by learning how to use
external Java classes in your programs.

Importing Java classes into Clojure

Writing large programs in any language quickly reaches a point where code needs to
be organized into logical units. This is a simple way of managing complexity, because
it breaks things down into more understandable chunks of code. In Clojure, the basic
unit of code organization is namespaces, which we explored in chapter 3. We also
showed how to require and use namespaces. In Java, the analogous unit of code orga-
nization is called the package. The import macro is used to import complete packages

118

5.1.2

CHAPTER 5 Exploring Clojure and Java interop

or specific classes from inside packages into Java programs that need them. In keep-
ing with that, Clojure also provides the import function. Here’s the general form:

(import & import-symbols-or-lists)

As you can tell, import takes a variable number of arguments. Each argument can
be either

= A sequence, where the first part of the list is a Java package name, followed by
the names of those classes from inside that package that you want to import
= A symbol naming the Java package-qualified class name

Here’s an example:
(import 'java.util.Date 'java.text.SimpleDateFormat)

This makes the Date and SimpleDateFormat classes available to the rest of the code in
the namespace. Notice the quote (') reader macro to instruct the runtime not to eval-
uate the symbol. Similarly, the following imports the Date and Set classes, both from
the java.util package:

(import '[java.util Date Set])

The recommended way to import Java classes into a namespace is to use the :import
option in the namespace declaration:

(ns com.clojureinaction.book
(:import (java.util Set Date)))

Typically, when you’re playing at the read-evaluate-print loop (REPL), you can use the
import form directly, and when you’re ready to write the code in your actual source
files, you can convert them to the namespace form just shown. Once classes have been
imported, they can be used easily in the rest of the code.

Creating instances

Here you’ll create a new instance of a Java class. Consider the following code:

(import ' (java.text SimpleDateFormat))
(def sdf (new SimpleDateFormat "yyyy-MM-dd"))

After the call to def, the sdf var has a root binding that’s a new instance of the class
SimpleDateFormat. The new special form works similarly to the new keyword in Java: it
accepts a class name and arguments that can be applied to a matching constructor.

Clojure also has an alternative to using the new form via its support of a special
notation for symbols containing a dot (.). If the first symbol in a list ends with a dot,
that symbol is assumed to be a class name, and the call is assumed to be to a construc-
tor of that class. The remaining symbols are assumed to be arguments to the matching
constructor. This form gets converted into the equivalent new form.

5.1.3

Calling Java from Clojure 119

Here’s the previous example again, rewritten to use this macro syntax:
(def sdf (SimpleDateFormat. "yyyy-MM-dd"))

Note the dot at the end of SimpleDateFormat..
Now that you know how to create new Java objects, let’s examine accessing their
members.

Accessing methods and fields

In Java, member access refers to accessing methods and fields of objects. Doing this
from within Clojure is easy because Clojure provides another convenient dot macro to
do this. Consider the following code:

(defn date-from-date-string [date-string]
(let [sdf (SimpleDateFormat. "yyyy-MM-dd")]
(.parse sdf date-string)))

You first create a SimpleDateFormat object as you did earlier. To call the parse
method on that object, you use the dot form by prefixing a dot to the symbol parse.
The first operand in that form is the object of the parse method you’re calling. The
remaining operands are arguments to the parse instance method.

STATIC METHODS
Calling static methods on classes is slightly different but just as easy:

(Long/parselLong "12321")

Here, parseLong is a static method on the class Long, which accepts a string contain-
ing a long number. This example returns 12321 as an instance of java.lang.Long.
Note that you don’t have to import the java.lang.Long class. This is because all
java.lang.* classes are already loaded by the Clojure runtime. Calling a static method
in general has the following form:

(Classname/staticMethod argsx*)

The first element of this list is a class name and static method combination like Long/
parseLong, whereas the remaining elements in the list are arguments to that method.

STATIC FIELDS

Accessing static fields is similar to calling static methods. Here’s an example: Let’s say
you want to do work with Java dates. In this example, you’ll access the static fields
JANUARY and FEBRUARY from the Calendar class:

(import '(java.util Calendar))
;=> java.util.Calendar
Calendar/JANUARY

i=> 0

Calendar/FEBRUARY

i=>1

120

5.14

CHAPTER 5 Exploring Clojure and Java interop

These two examples access the static fields JANUARY and FEBRUARY from the Calendar
class.

You’ve now seen how easy it is to access regular methods as well as static ones and
also to get at static fields from within Java objects and classes. Next, let’s look at the dot
special form provided by Clojure to make Java access easier.

Macros and the dot special form

In Clojure, all underlying Java access is done via the dot special form. The macro
forms we just discussed get converted into forms using this dot special form. The
Clojure documentation says that the dot special form can be read as “in the scope
of.” This means that the member access happens in the scope of the value of the
first symbol.

Let’s examine how it works. Consider the following pair of general forms:

(. ClassnameSymbol methodSymbol argsk*)
(. ClassnameSymbol (methodSymbol args*))

These forms allow static methods to be called on classes specified as the first argu-
ment. Here’s an example of using them:

(. System getenv "PATH")
(. System (getenv "PATH"))

Both these forms return the system path as a string. The second form uses parentheses
to enclose the name of the method being called. This is convenient when such a call is
being made inside other macros. Typically in code, if you use the dot special form
directly, the first form is preferred, but inside macros or while generating code, the
second form is okay. Having said that, idiomatic code uses the form described in
the previous section.

Now let’s look at another example that’s similar but operates on instances of Java
classes (objects) as opposed to classes. Here are the general forms:

(. instanceExpr methodSymbol args¥*)
(. instanceExpr (methodSymbol args*))

Say you want to write a function that will return a number randomly picked between 0
and 10. The following example illustrates both these forms:

(import '(java.util Random))
;=> java.util.Random

(def rnd (Random.))

;=> #'user/rnd

(. rnd nextInt 10)

;=>4

(. rnd (nextInt 10))

;=> 3

The second form, with the extra parentheses, is useful when this kind of call is made
inside other macros. Also as pointed out in the previous section, when using the dot

Calling Java from Clojure 121

special form in this way, the first option is preferred. The forms described in the previ-
ous section are the idiomatic way to access members of Java objects.
Finally, consider the following two general forms:

(. ClassnameSymbol memberSymbol)
(. instanceExpr memberSymbol)

These access public fields from either a class or an instance of a class. Here’s an exam-
ple of accessing a static field from the Calendar class that you saw earlier, rewritten
using the dot special form:

(. Calendar DECEMBER)

Now that you’ve seen how the dot special form works, it’s worth repeating that it’s idi-
omatic to use the regular forms as described in the previous section. The dot special
form is usually reserved for use within macros. We’ll now look at another couple of
convenience macros, the dot-dot macro (two dots) and doto.

.. (DOT-DOT)
Java code tends to be verbose. It isn’t only the syntax; the mutable state, its idea of
object orientation, and the lack of higher-order functions all contribute to its verbos-
ity. One common pattern is a sequence of dot method calls that need to be chained
together, each operating on the result of the previous one. The .. (dot-dot) macro
helps with this.

Consider the following code snippet:

(import ' (java.util Calendar TimeZone))

;=> java.util.TimeZone May vary on
(. (. (Calendar/getInstance) (getTimeZone)) (getDisplayName)) QJ your system
;=> "Pacific Standard Time"

But writing that code is a bit unwieldy—where the dots and the brackets go can get
confusing. Imagine if you had another method call to make! You can simplify this
by using the form without the extra parentheses as described earlier, to make it a lit-
tle cleaner:

(. (. (Calendar/getInstance) getTimeZone) getDisplayName)

This is better, but not by much. This is where the dot-dot form comes in. It’s a conve-
nient macro that chains together method calls. The previous code can be rewritten
using this macro as follows:

(.. (Calendar/getInstance) (getTimeZone) (getDisplayName))

This can be simplified (without the extra parentheses, because you're passing no
arguments to either the getTimeZone or getDisplayName methods) to the following:

(.. (Calendar/getInstance) getTimeZone getDisplayName)

122

5.1.5

CHAPTER 5 Exploring Clojure and Java interop

If you were using method signatures that accepted arguments, you’d do so as follows:

(.. (Calendar/getInstance)
getTimeZone
(getDisplayName true TimeZone/SHORT))

This might return something like "PDT", again depending on where you are. Note
that the code reads better, too, because the sequence of method calls is clearer. Hav-
ing examined this convenience macro, let’s look at another way to write clearer code
in such situations.

DOTO

The doto macro helps you write code where multiple methods are called on the same
Java object. Consider this contrived function that starts with the current time and
works out the most recent midnight using the set method of java.util.Calendar
objects:

(import ' (java.util Calendar))
(defn the-past-midnight-1 []
(let [calendar-obj (Calendar/getInstance)]

(.set calendar-obj Calendar/AM PM Calendar/AM)
(.set calendar-obj Calendar/HOUR 0)
(.set calendar-obj Calendar/MINUTE 0)
(.set calendar-obj Calendar/SECOND 0)
(.set calendar-obj Calendar/MILLISECOND 0)
(.getTime calendar-obj)))

As you can see, there’s tedious repetition of the symbol calendar-obj in this code.
The doto macro eliminates this sort of duplication. Here’s an example:

(defn the-past-midnight-2 []
(let [calendar-obj (Calendar/getInstance)]
(doto calendar-obj
(.set Calendar/AM PM Calendar/AM)
(.set Calendar/HOUR 0)
(.set Calendar/MINUTE 0)
(.set Calendar/SECOND 0)
(.set Calendar/MILLISECOND 0))
(.getTime calendar-obj)))

In general, it accepts a symbol followed by a body of forms. The symbol is spliced into
the form without the doto. This kind of macro used to eliminate duplication is quite
common in Clojure code.

Helpful Clojure macros for working with Java

Before wrapping up this section, let’s look at a couple of macros that make life easier
when dealing with Java code. We’ll first talk about memfn, which is a convenient way to
convert Java instance methods into Clojure functions. We’ll then cover bean, a super-
convenient way to convert a Java bean object into a Clojure map.

Calling Java from Clojure 123

MEMFN
Let’s say you wanted to collect the byte arrays that compose a few strings. Here’s how
you might do it:

(map (fn [x] (.getBytes x)) ["amit" "rob" "kyle"])
This can be simplified using the reader macro for anonymous functions:
(map #(.getBytes %) ["amit" "rob" "kyle"])

Creating this anonymous function is necessary because an instance method like
getBytes can’t be used as a regular higher-order Clojure function. The reason is
that when the code is read, Clojure (and Java) doesn’t know which method with the
name getBytes you mean—it could be from any class that defines a method with
this name or even a method that takes a different number or type of arguments.
(Remember, in Java String.getBytes (), String.getBytes (Charset charset), and
String.getBytes (String string) are all different methods!) To disambiguate
getBytes to the no-argument method of java.lang.String, Clojure needs to see
an object instance at runtime or know what Java class it will be at compile time using
type hints.

But there’s a convenient macro called memfn (which stands for member-as-func-
tion) that makes it easy to convert an instance member call into a Clojure function.
The previous use of the higher-order function map is a typical example of such use.
Here’s an example of using memfn:

(memfn getBytes)

Clojure will determine the method to call at runtime using Java reflection on the
instance it sees. But if you include a type hint, Clojure will avoid using runtime reflec-
tion and emit the call to the correct method directly at compile time for increased
performance. Here’s an example using reflection:

(memfn “String getBytes)
Using it in the context of map, for instance, looks like this:
(map (memfn getBytes) ["amit" "rob" "kyle"])

memfn also works with member functions that accept more than one argument. Con-
sider the following call to the subSequence member function on a String object:

(.subSequence "Clojure" 2 5)
;=> ||°ju||

The equivalent form with optional type hints is

((memfn “String subSequence “Long start “Long end) "Clojure" 2 5)
;=> ||°ju||

124

CHAPTER 5 Exploring Clojure and Java interop

The Clojure function returned by the call to (memfn subSequence start end) can be
used as a regular function in all the usual constructs. Now we’ll look at bean, another
function that’s quite useful when working with Java code.

BEAN

bean is a convenient function that’s useful when dealing with Java code, especially
JavaBeans, which are classes that conform to a simple standard involving exposing
their data via getter and setter methods. Instead of having to deal with calling the get-
ters via the macros described previously (which can get tedious rather quickly if you’re
dealing with large objects), you could use the Clojure-provided bean function to con-
vert the object into a hash map. Consider the following examples:

(bean (Calendar/getInstance))

This returns a Clojure map that contains all its bean properties. Being a Clojure data
structure, it’s immutable. It looks like the following:

{ :timeInMillis 1257466522295,
:minimalDaysInFirstWeek 1,
:lenient true,

:firstDayOfWeek 1,
:class java.util.GregorianCalendar

;; other properties

}

This map is a lot easier to work with when compared to calling getters on the original
object. Next we’ll look at Clojure’s mechanism for dealing with arrays.

Number of parentheses

People often talk about the sheer number of parentheses that Clojure uses. Despite
the advantages this syntax offers, first-time Clojure programmers can find the code
a bit hard to read.

This is why it’'s somewhat amusing to note that when compared to Java code, Clojure
code often has fewer parentheses, all used and placed in a consistent and regular
manner. It's true that the placement of the parentheses is different, but it’s a point
worth noticing.

ARRAYS

A Java array is a container object that holds values of the same type. It’s a random-access
data structure that uses integers as its keys. Although not used as often as other con-
tainer classes from the standard Java library, it’s rather common in Java programs. Clo-
jure has native support for dealing with Java arrays. Consider the following snippet:

(def tokens (.split "clojure.in.action" "\\."))

tokens is a Java array of String objects.

5.1.6

Calling Java from Clojure 125

Let’s now look at a few of the functions that Clojure provides that help in working
with Java arrays:

m (alength tokens)—alength returns the size of the array, which in this case
returns 3.

= (aget tokens 2)—aget returns the element of the array at the index specified,
which in this case returns the string "action".

m (aset tokens 2 "actionable")—This mutates the tokens array so that the last
token is now actionable.

It’s worth remembering at this point that unlike any of Clojure’s core data structures,
Java arrays are mutable—as are most objects in Java. You’ll see in chapter 6 how muta-
bility can cause problems in multithreaded programs, and you’ll also learn about Clo-
jure’s approach to dealing with concurrency.

Clojure provides several other functions that allow sequences to be converted into
Java arrays (to-array, to-array-2d, and into-array) and one that allows arbitrary
new Java arrays to be created (make-array). There are also array-specific versions of
the previously seen map and reduce functions, called amap and areduce.

All these functions make working with Java arrays easy. Having said that, because
arrays need special handling and are a bit unwieldy compared to regular sequences,
you should limit their use to situations where they’re absolutely needed.

We’ve covered quite a few aspects of Clojure’s support for interoperating with the
world of Java code. We’re nearly finished; the last thing we’ll discuss is how to imple-
ment Java interfaces and extend Java classes from within Clojure code. By the end of
the next section, you’ll have a mostly complete Java interop toolkit under your belt.

Implementing interfaces and extending classes

When working with Java libraries and frameworks, it’s often necessary to define new
classes that implement certain interfaces or extend certain classes. It would be a
shame if any of that required writing Java code. Luckily, Clojure has a macro called
proxy that allows you to do this from within Clojure code.

MOUSEADAPTER

Consider, for instance, the good-old MouseAdapter. This is a class you might use while
creating a GUI program using Java. It’s an adapter class that implements several event
listener interfaces with default (do-nothing) implementations. This class is useful
when creating GUI programs with the Abstract Windowing Toolkit (AWT) library. Let’s
explore the following method on this class:

void mousePressed (MouseEvent e)
Here’s a simple example of creating an implementation of the MouseAdapter class:

(import 'java.awt.event.MouseAdapter)
(proxy [MouseAdapter] I[]
(mousePressed [event]
(println "Hey!")))

126

5.2

5.21

CHAPTER 5 Exploring Clojure and Java interop

The general form of the proxy macro is
(proxy [class-and-interfaces] [args] fs+)

This shows that the proxy form accepts a vector of Java classes and interfaces, followed
by a vector of arguments (possibly empty) that will be passed to the superclass con-
structor, followed by any methods being defined. In the previous example, the Mouse-
Adapter interface is specified, and the method mousePressed is implemented.

REIFY

There’s another way to implement Java interfaces, and that’s using the reify macro.
We’ll study this macro in more detail in chapter 9, but here’s a simplified version of
its interface:

(reify specs¥)

Here, specs consist of an interface name, followed by zero or more method bodies.
For instance, here’s an example of creating an instance of Java’s FileFilter interface:
(reify java.io.FileFilter

(accept [this f]
(.isDirectory £f)))

You can have any number of interface and method body definitions within a call to
reify. Again, reify does a lot more, and you’ll see it in action again soon.

This section was quite dense and filled with a lot of detail! You should now be in a
position to use any kind of Java library in your Clojure programs. This is a great fea-
ture of the Clojure language and is quite critical to writing real-world programs.

Now that you understand Clojure’s support for Java interoperability, you’ll gener-
ate some static Java classes from Clojure code.

Compiling Clojure code to Java bytecode

As you saw in chapter 1, Clojure doesn’t have an interpreter. Code is evaluated one
s-expression at a time. During that process, if something needs to be compiled, the
Clojure runtime does so. Ultimately, because Clojure is hosted on the JVM, everything
is converted to Java bytecode before execution, and the programmer doesn’t have to
worry about when and how this happens.

Clojure provides a mechanism to do this compilation ahead of time (AOT). AOT
compilation has its advantages. Packaging the code lets you deliver it as class files
(and without including the source code) for use by other Java applications, and it
speeds up the program’s startup time. In this section, we’ll examine how to AOT
compile Clojure code.

Example: A tale of two calculators

Let’s examine some code that implements a couple of financial calculators that you
might use to manage investments in stocks and bonds. We’ll lay out the code in a

Compiling Clojure code to Java bytecode 127

root

classes

sSrc

I— com

I— curry Figure 5.1 Typical organization of a
I_ Clojure project. The src directory contains
utils the source code, organized in a similar
calculators.cli way to Java packages.

directory structure for easy organization—one that’s somewhat idiomatic in the Clo-
jure world. Figure 5.1 shows this organization.

Note that calculators.clj is located in the src/com/curry/utils directory and is the
file that contains the namespace of our current interest. Here are the contents:

(ns com.curry.utils.calculators
(:gen-class))

(defn present-value [datal]
(println "calculating present value..."))

The :gen-class directive used in the namespace declaration is used to generate a
named class for this namespace when compiled. You can compile this code from a REPL
that has both classes and src directories on the classpath. The compile function is
used to do this, and it accepts the namespace to be compiled:

(compile 'com.curry.utils.calculators)

If successful, this function returns the name of the namespace that was compiled.
Let’s now examine what the output of this compilation process is, what class files are
generated, and where they’re located.

GENERATED CLASSES

As noted, the compile function compiles the specified namespace. In this case, it gener-
ates class files for the com.curry.utils.calculators namespace. Three class files that
get generated here are calculators_init.class, calculators.class, and calculators$present_
value__xx.class, and they’re located in the classes/com/curry/utils directory.

Generated classes using Leiningen

The paths of generated classes described here are the defaults for the raw Clojure
REPL. If you're using Clojure through Leiningen as we suggest in appendix A, then
your generated classes will have the same paths but be under the target/ directory
instead of the root. For example, instead of being under classes/com/curry/ utils
(raw Clojure REPL), generated classes will be under target/classes/com/curry/utils.
This difference is governed by the *compile-path* dynamic var explained shortly.

128

CHAPTER 5 Exploring Clojure and Java interop

A class file is created for each Clojure function. In this case, the present-value func-
tion causes the calculators$present_value_xx.class file to be created, the name of
which will vary each time the namespace is recompiled (because it’s a generated
name). A class file is also generated for each gen-class, and in this case this corre-
sponds to the calculators.class file.

Finally, the class files that have the _ init in their names contain a loader class,
and one such file is generated for every Clojure source file. Typically, this loader class
doesn’t need to be referenced directly, because use, require, and load all figure out
which file to use when they’re called.

:gen-class has a lot of options that allow control over various aspects of the gen-
erated code. These are explored in section 5.2.2. Now that we’ve covered the basics of
compilation, you’ll try to compile a namespace that’s spread across files.

ADDITIONAL FILES

Here you’ll add a couple more calculators to the calculators namespace. You'll cre-
ate two more files to do this, one for each new calculator function. The resulting file
structure is shown in figure 5.2.

root

classes

src

L
L
L

utils

calculators.clj
L Figure 5.2 Adding two new files, dcf.clj and

calc fcf.clj, in a subdirectory of utils that have code for
dcf.clj the same com.curry.utils.calculators
fcf.clj namespace.

The contents of dcf.clj are

(in-ns 'com.curry.utils.calculators)
(defn discounted-cash-flow [datal
(println "calculating discounted cash flow..."))

And the contents of fcf.c]j are

(in-ns 'com.curry.utils.calculators)
(defn free-cash-flow [data]
(println "calculating free cash flow..."))

5.2.2

Compiling Clojure code to Java bytecode 129

Note that they both use in-ns to ensure that these files all belong to the same name-
space. calculators.clj is modified as follows:

(ns com.curry.utils.calculators
(:gen-class))

(load "calc/fcf")

(load "calc/dcf")

(defn present-value [datal]
(println "calculating present value..."))

Note the use of load using relative paths, because the fcf.clj and dcf.clj files are inside
the calc subdirectory of utils. Calling compile, as you did before, results in new class
files being generated in the classes directory. Two files, namely dcf__init.class and
fcf__init.class, are generated in the classes/com/curry/utils/calc directory. New files
are also created for the new functions, namely discounted-cash-flow and free-
cash-flow, in the classes/com/curry/utils directory.

COMPILE-PATH

In case you're curious as to why the generated code is being output to the classes
directory, it’s because it’s the default value of the global var *compile-path*. It’s easy
to change this by calling set! to alter the value of the var or to call compile inside a
binding form with *compile-path* bound to something appropriate. The thing to
remember is that the directory must exist, and it should be on the classpath.

Creating Java classes and interfaces using gen-class
and gen-interface

Clojure also has a standalone utility for generating Java classes and interfaces in the
gen-class and gen-interface macros. (gen-interface works in a similar fashion to
gen-class but has fewer options because it’s limited to defining an interface.) When
code containing these calls is compiled, it generates bytecode for the specified classes
or interfaces and writes them into class files, as you saw earlier.

In this section, you’ll see an example of how gen-class works. Consider the follow-
ing listing, which is a contrived example of an abstract Java class that we’ll use to illus-
trate gen-class.

package com.gentest;
public abstract class AbstractJavaClass {
public AbstractJavaClass(String a, String b) {
System.out.println("Constructor: a, b");
}

public AbstractJavaClass (String a)
System.out.println("Constructor: a");
}

public abstract String getCurrentStatus() ;

130 CHAPTER 5 Exploring Clojure and Java interop

public String getSecret () {
return "The Secret";

}

Once AbstractJavaClass is compiled with javac AbtractJavaClass.java, the
Abstract]JavaClass.class file needs to be on Clojure’s classpath and in a subdirectory
that matches the package specification. For example, if target/classes/ is in the class-
path, this class file needs to be at target/classes/com/gentest/AbstractjavaClass.class.
After ensuring that the Clojure runtime can see the class, you can use gen-class as

shown in this next listing.

(ns com.gentest.gen-clojure
(:import (com.gentest AbstractJavaClass))
(:gen-class
:name com.gentest.ConcreteClojureClass
:extends com.gentest.AbstractJavaClass
:constructors {[String] [String]
[String String] [String Stringl}
:implements [Runnable]
:init initialize
:state localState
:methods [[statevValue [] Stringl]))
(defn -initialize
([s1]
(println "Init value:" s1)
[[s1 "default"] (ref s1)])
([s1 s2]
(println "Init values:" sl "," s2)
[[s1 s2] (ref s2)1))
(defn -getCurrentStatus [this]
"getCurrentStatus from - com.gentest.ConcreteClojureClass")
(defn -statevValue [this]
@(.localState this))
(defn -run [this]
(println "In run!")
(println "I'm a" (class this))
(dosync (ref-set (.localState this) "GO")))
(defn -main []
(let [g (new com.gentest.ConcreteClojureClass "READY")]
(println (.getCurrentStatus g))
(println (.getSecret g))
(println (.stateValue g)))
(let [g (new com.gentest.ConcreteClojureClass "READY" "SET")]
(println (.stateValue g))
(.start (Thread. g))
(Thread/sleep 1000)
(println (.statevalue g))))

Now, let’s go over the code in listing 5.2 to understand what’s going on. The call to
ns should be familiar by now. It uses :import to pull in AbstractJavaClass from

Compiling Clojure code to Java bytecode 131

listing 5.1. This was why it needs to be on the classpath. The next option, :gen-class,
is our primary interest. It can take several options, some of which are used in this
example and some aren’t. Table 5.1 describes the options used in listing 5.2.

Table 5.1 gen-class options used in listing 5.2

Option Description
:name The name of the class that will be generated when this namespace is compiled.
:extends The fully qualified name of the superclass.
:constructors Explicit specification of constructors via a map where each key is a vector of

types that specifies a constructor signature. Values are similar vectors that
identify the signature of a superclass constructor.

:implements A vector of Java interfaces that the class implements.

:init The name of a function that will be called with the arguments to the constructor.
Must return a vector of two elements, the first being a vector of arguments to
the superclass’s constructor, and the second an object to contain the current
instance’s state (usually an atom).

:methods Specifies the signatures of additional methods of the generated class. This is
not needed for public methods defined in inherited interfaces or superclasses:
gen-class will declare those automatically.

Functions such as -initialize, -getCurrentStatus, and -run implement or override
interface or superclass methods. The reason they’re prefixed with a dash (-) is so that
they can be identified via convention. The prefix can be changed using the :prefix
option (see table 5.2). Now that you understand what each option in the example
does, you're ready to run it.

RUNNING THE EXAMPLE

Run (compile 'com.gentest.gen-clojure) from a REPL to create the Concrete-
ClojureClass.class file like you did in the previous example. The classpath needs to have
clojure jar on it as well as the locations of AbstractJavaClass.class and ConcreteClojure-
Class.class. The following command assumes the CLASSPATH environment variable has
been set up appropriately. The command to test the generated class is

java com.gentest.ConcreteClojureClass

This outputs the following to the console:

Init value: READY

Constructor: a

getCurrentStatus from - com.gentest.ConcreteClojureClass
The Secret

READY

Init values: READY , SET

Constructor: a, b

SET

132

CHAPTER 5 Exploring Clojure and Java interop

In run!
I'm a com.gentest.ConcreteClojureClass
GO

As the code shows, you’ve used both constructor signatures to create instances of the
generated class. You've also called a superclass method getSecret and the overridden
method getCurrentStatus. Finally, you've run the second instance as a thread and
checked the mutating state localState, which changed from "SET" to "GO".

Table 5.2 shows the other options available to gen-class.

Table 5.2 More gen-class options

Option Description

:post-init Specifies a function by name that’s called with the newly created instance as
the first argument and each time an instance is created, after all constructors
have run. Its return value is ignored.

:main Specifies whether a main method should be generated so this class can be
run as an application entry point from the command line. Defaults to true.

:factory Specifies the name of the factory function(s) that will have the same signa-
ture as the constructors. A public final instance of the class will also be cre-
ated. An :init function will also be needed to supply the initial state.

:exposes Exposes protected fields inherited from the superclass. The value is a map
where the keys are the name of the protected field and the values are maps
specifying the names of the getters and setters. The format is

:exposes {protected-field-name {:get name :set name},

-}

:exposes-methods | Exposes overridden methods from the superclass via the specified name. The
format of this option is

:exposes-methods {super-method-name exposed-name, ...}
:prefix Defaults to the dash (-). When methods like getCurrentStatus
are called, they will be looked up by prefixing this value (for example,
-getCurrentStatus).
:impl-ns The name of the namespace in which to find method implementations.

Defaults to the current namespace but can be specified here if the methods
being implemented or overridden are in a different namespace.

:load-impl-ns Whether the generated Java class will load its Clojure implementations when
it's initialized. Defaults to true; can be turned to false if you need to load
either the Clojure or the generated Java classes separately. (This is a special-
ized setting you're unlikely to need.)

This is quite an exhaustive set of options, and it lets the programmer influence nearly
every aspect of the generated code.

LEININGEN AND JAVA PROJECTS
The Java and Clojure code you used to create the ConcreteClojureClass class is an
example of a mixed Clojure and Java project. Leiningen makes managing such projects

5.3

Calling Clojure from Java 133

much easier. You can instead create a project.clj like in listing 5.3 instead of invoking
java, javac, and Clojure’s compile function manually. With Leiningen all you need to
do is place your source files in the right directories and execute lein run from the
command line: this command will automatically compile AbstractJavaClass.java and
the gen-classed ConcreteClojureClass in gen-clojure.clj and run the main method of
ConcreteClojureClass.

Leiningen can alleviate much of the confusion and tedium out of managing Clo-
jure projects, especially when the project mixes Java and Clojure code. Appendix A
has more information on how to install Leiningen if you haven’t been using it already.

(defproject gentest "0.1.0"
:dependencies [[org.clojure/clojure "1.6.0"]]

; Place our "AbstractJavaClass.java" and "gen-clojure.clj" files under
; the src/com/gentest directory.

:source-paths ["src"]

:java-source-paths ["src"]

; raot is a list of clojure namespaces to compile.
:aot [com.gentest.gen-clojure]

; This is the java class "lein run" should execute.
:main com.gentest.ConcreteClojureClass)

Now that you’ve seen how to compile and generate Java code from the Clojure source,
we’re ready to move on. You're now going to see how to go the other way: to call Clo-
jure functions from Java programs. This will allow you to write appropriate parts of
your application in Clojure using all the facilities provided by the language and then
use it from other Java code.

Calling Clojure from Java

One of the great things about most languages hosted on the JVM is that they can be
embedded into other Java programs. This is useful when you need to script the larger
system. Let’s review how to call Clojure functions from Java code.

Consider the following Clojure function, defined in the clj.script.examples
namespace:

(ns clj.script.examples)

(defn print-report [user-name]
(println "Report for:" user-name)
10)

If this Clojure code is in a file named clojure_script.clj, you can now call the print-
report function from a Java method, as shown in the following code:

import clojure.lang.RT;
import clojure.lang.Var;

134

5.4

CHAPTER 5 Exploring Clojure and Java interop

public class Driver ({
public static void main(String[] args) throws Exception {
RT.loadResourceScript ("clojure_script.clj");

Var report = RT.var("clj.script.examples", "print-report");
Integer result = (Integer) report.invoke("Siva") ;
System.out.println("Result: " + result);

You’ll need to import clojure.lang.RT and clojure.lang.Var for this code to work.
Here, RT is the class that represents the Clojure runtime. You initialize it by calling the
static method loadResourceScript on the RT class. It accepts the name of the Clojure
script file and loads the code defined within. The RT class also has a var static method,
which accepts a namespace name along with a var name (both as strings). It looks up
a var as specified and returns a var object, which can then be invoked using the
invoke method. The invoke method can accept an arbitrary number of arguments.

As you can see, the basics of calling Clojure from Java are quite straightforward.
This is by design; Clojure was created to embrace the JVM, and does so in a seamless,
user-friendly manner.

Summary

This chapter explored Clojure’s excellent support for interoperability with Java. This
is an important feature, because it gives programmers instant access to thousands of
libraries and frameworks. As you’ll see in later parts of the book, this is a huge
advantage when it comes to building real-world systems in Clojure. You can write your
application-specific code in Clojure and use well-tested, production-quality Java librar-
ies for infrastructure-related requirements—for example, accessing HBase (an open
source implementation of Google’s BigTable) and using RabbitMQ (an extremely fast
messaging system).

This availability of a large number of battle-tested libraries and frameworks makes
a huge difference to a language such as Clojure. Apart from making all this function-
ality available to use from Clojure, the Java interop also makes it possible to write code
that coexists with and leverages existing investments in Java systems. This allows Clo-
jure to be brought into environments and organizations in an incremental fashion.
Lastly, the elegance of the interop makes it easy to use Java code from within Clojure.
All these factors contribute to making Clojure’s embrace of the Java platform a huge
plus when considering the adoption of the language. In fact, once you’re familiar with
all the convenient features that Clojure provides for creating and using Java classes
and objects, you might decide it’s easier to work with Java code from Clojure than
from Java itself!

In the next chapter we’ll look at Clojure’s features for handling state and con-
currency.

State and the
concurrent world

This chapter covers

The problems with mutable state
m Clojure’s approach to state

Refs, agents, atoms, and vars

m Futures and promises

State—you’re doing it wrong.

—Rich Hickey!

The preceding quote is from a presentation by Rich Hickey in which he discusses
Clojure’s approach to concurrency and state. He means that most languages use an
approach to modeling state that doesn’t work very well. To be precise, it used to
work when computers were less powerful and ran programs in a single-threaded
fashion, but in today’s world of increasingly multicore and multi-CPU computers,
the model has broken down. This is evidenced by the difficulty of writing bug-free
multithreaded code in typical object-oriented (OO) languages like Java and C++.

I From a presentation at the Boston Lisp meeting, 2012, http:/www.youtube.com/watch?v=7mbcYxHO
OnM&t=00h21m04s.

135

http://www.youtube.com/watch?v=7mbcYxHO0nM&t=00h21m04s
http://www.youtube.com/watch?v=7mbcYxHO0nM&t=00h21m04s

136

6.1

6.1.1

CHAPTER 6 State and the concurrent world

Still, programmers continue to make the attempt, because today’s demands on soft-
ware require that it take advantage of all available CPU cores. As software requirements
grow in complexity, parallelism is becoming an implicit requirement.

This chapter is about concurrent programs and the problems they face in deal-
ing with state. We’ll first examine what these problems are and then look at the tra-
ditional solutions. We’ll then look at Clojure’s approach to dealing with these issues
and show that when trying to solve difficult problems, it’s sometimes worth starting
with a fresh slate.

The problem with state

State is the current set of values associated with things in a program. For example, a
payroll program might deal with employee objects. Each employee object represents
the state of the employee, and every program usually has a lot of such state. There’s
no problem with state, per se, or even with mutating state. The real world is full of per-
ceived changes: people change, plans change, the weather changes, and the balance
in a bank account changes. The problem occurs when concurrent (multithreaded)
programs share this sort of state among different threads and then attempt to make
updates to it. When the illusion of single-threaded execution breaks down, the code
encounters all manner of inconsistent data. In this section, we’ll look at a solution to
this problem. But before we do, let’s recap the issues faced by concurrent programs
operating on shared data.

Common problems with shared state

Most problems with multithreaded programs happen because changes to shared data
aren’t correctly protected. For the purposes of this chapter, we’ll summarize the issues
as follows.

LOST OR BURIED UPDATES

Lost updates occur when two threads update the same data one after the other. The
update made by the first thread is lost because the second one overwrites it. A classic
example is two threads incrementing a counter, the current value of which is 10.
Because execution of threads is interleaved, both threads can do a read on the
counter and think the value is 10, and then both increment it to 11. The problem is
that the final value should have been 12, and the update done by one of the threads
was lost.

DIRTY AND UNREPEATABLE READS

A dirty read happens when a thread reads data that another thread is in the process of
updating. Before the one thread could completely update the data, the other thread
has read inconsistent (dirty) data. Similarly, an unrepeatable read happens when a
thread reads a particular data set, but because other threads are updating it, the
thread can never do another read that results in it seeing the same data again.

6.1.2

The problem with state 137

PHANTOM READS
A phantom read happens when a thread reads data that’s been deleted (or more data
is added). The reading thread is said to have performed a phantom read because it
has summarily read data that no longer exists.

Brian Goetz’s book Java Concurrency in Practice (Addison-Wesley Professional, 2006)
does an incredible job of throwing light on these issues. The book uses Java to illus-
trate examples, so it isn’t directly useful, but it’s still highly recommended.

Traditional solution

The most obvious solution to these problems is to impose a level of control on those
parts of the code that deal with such mutable, shared data. This is done using locks,
which are constructs that control the execution of sections of code, ensuring that only
a single thread runs a lock-protected section of code at a time. When using locks, a
thread can execute a destructive method (one that mutates data) that’s protected with
alock only if it’s able to first obtain an associated lock. If a thread tries to execute such
code while some other thread holds the lock, it blocks until the lock becomes avail-
able again. The blocking thread is allowed to resume execution only after it obtains
the lock at a later time.

This approach might seem reasonable, but it gets complicated the moment more
than one piece of mutable data needs a coordinated change. When this happens,
each thread that needs to make the change must obtain multiple locks, leading to
more contention and resulting in concurrency problems. It’s difficult to ensure cor-
rectness of multithreaded programs that have to deal with multiple mutating data
structures. Further, finding and fixing bugs in such programs is difficult thanks to the
inherently nondeterministic nature of multithreaded programs.

Still, programs of significant complexity have been written using locks. It takes a
lot more time and money to ensure things work as expected and a larger mainte-
nance budget to ensure things continue to work properly while changes are being
made to the program. It makes you wonder if there isn’t a better approach to solving
this problem.

This chapter is about such an approach. Before we get into the meat of the solu-
tion, we’ll examine a couple of things. First, we’ll look at the general disadvantages of
using locks in multithreaded programs. Then, we’ll take a quick overview of the new
issues that arise from the presence of locking.

DISADVANTAGES OF LOCKING
The most obvious disadvantage of locking is that code is less multithreaded than it was
before the introduction of locks. When one thread obtains and holds a lock, no other
thread can execute that code, causing other threads to wait. This can be wasteful, and
it reduces throughput of multithreaded applications.

Further, locks are an excessive solution. Consider the case where a thread only
wants to read some piece of mutable data. To ensure that no other thread makes
changes while it’s doing its work, the reader thread must lock all concerned mutable

138

CHAPTER 6 State and the concurrent world

data. This causes not only writers to block but other readers too. This is unnecessar-
ily wasteful.

Lastly, another disadvantage of locking is that you, the programmer, must remember
to lock, and lock the right things, and in the right order. If someone introduces a bug
that involves a forgotten lock, it can be difficult to track down and fix. There are no
automatic mechanisms to flag this situation and no compile-time or runtime warnings
associated with such situations, other than the fact that the program behaves in an
unexpected manner! The knowledge of what to lock and in what order to lock things
(so that the locks can be released in the reverse order) can’t be expressed within pro-
gram code—typically, it’s recorded in technical documentation. Everyone in the soft-
ware industry knows how well documentation works.

Unfortunately, these aren’t the only disadvantages of using locking; it causes new
problems too. We’ll examine some of them now.

NEW PROBLEMS WITH LOCKING

When a single thread needs to change more than one piece of mutable data, it needs
to obtain locks for all of them. This is the only way for a lock-based solution to ensure
coordinated changes to multiple items. The fact that threads need to obtain locks to
do their work causes contention for these locks. This contention results in a few issues
that are typically categorized as shown in table 6.1.

Table 6.1 Issues that arise from the use of locks

Issue Description

Deadlock This is the case where two or more threads wait for the other to release locks that they
need. This cyclic dependency results in all concerned threads being unable to proceed.

Starvation | This happens when a thread isn’t allocated enough resources to do its job, causing it to
starve and never complete.

Livelock This is a special case of starvation, and it happens when two threads continue executing
(that is, changing their states) but make no progress toward their final goal. Imagine
two people meeting in a hallway and each trying to pass the other. If they both wait

for the other to move, it results in a deadlock. If they both keep moving toward the
other, they still end up blocking each other from passing. This situation results in a
livelock, because they’re both doing work and changing states but are still unable

to proceed.

Race This is a general situation where the interleaving of execution of threads causes an unde-
condition sired computational result. Such bugs are difficult to debug because race conditions hap-
pen in relatively rare scenarios.

With all these disadvantages and issues that accompany the use of locks, you must
wonder if there isn’t a better solution to the problem of concurrency and state. We’ll
explore this in the next section, beginning with a fresh look at modeling state itself.

6.2

Separating identities and values 139

Separating identities and values

Now that we’ve explored the landscape of some of the common problems of concur-
rent programs and shared state, including the popular solution of locks, we’re ready
to examine an alternative point of view. Let’s begin by reexamining a construct
offered by most popular programming languages to deal with state—that of objects.
OO languages like Java, C++, Ruby, and Python offer the notion of classes that contain
state and related operations. The idea is to provide the means to encapsulate things to
separate responsibility among various abstractions, allowing for cleaner design. This is
a noble goal and is probably even achieved once in a while. But most languages have a
flaw in this philosophy that causes problems when these same programs need to run
as multithreaded applications. And most programs eventually do need multithread-
ing, either because requirements change or to take advantage of multicore CPUs.

The flaw is that these languages conflate the idea of what Rich Hickey calls identity
with that of state. Consider a person’s favorite set of movies. As a child, this person’s
set might contain films made by Disney and Pixar. As a grownup, the person’s set
might contain other movies, such as ones directed by Tim Burton or Robert Zemeckis.
The entity represented by favorite-movies changes over time. Or does it?

In reality, there are two different sets of movies. At one point (earlier), favorite-
movies referred to the set containing children’s movies; at another point (later), it
referred to a different set that contained other movies. What changes over time, there-
fore, isn’t the set itself but which set the entity favorite-movies refers to. Further, at any
given point, a set of movies itself doesn’t change. The timeline demands different sets
containing different movies over time, even if some movies appear in more than one set.

To summarize, it’s important to realize that we’re talking about two distinct con-
cepts. The first is that of an identity—someone’s favorite movies. It’s the subject of all
the action in the associated program. The second is the sequence of values that this
identity assumes over the course of the program. These two ideas give us an interesting
definition of state—the value of an identity at a particular point time. This separation is

shown in figure 6.1.

Disney movies

(value)
N ol
7
w7
//
favorite-movies Atadolescence _| Pixar movies
(identity) (value)
Figure 6.1 It’s important to
recognize the separation between
what we’re talking about (say,
favorite movies, which is an identity)
Other movies and the values of that identity. The
(value) identity itself never changes, but it
refers to different values over time.

140

6.2.1

6.2.2

CHAPTER 6 State and the concurrent world

This idea of state is different from what traditional implementations of OO languages
provide out of the box. For example, in a language like Java or Ruby, the minute a
class is defined with stateful fields and destructive methods (those that change a part
of the object), concurrency issues begin to creep into the world and can lead to many
of the problems discussed earlier. This approach to state might have worked a few
years ago when everything was single threaded, but it doesn’t work anymore.

Now that you understand some of the terms involved, let’s further examine the
idea of using a series of immutable values to model the state of an identity.

Immutable values

An immutable object is one that can’t change once it has been created. To simulate
change, you’d have to create a whole new object and replace the old one. In the light
of our discussion so far, this means that when the identity of favorite-movies is being
modeled, it should be defined as a reference to an immutable object (a set, in this
case). Over time, the reference would point to different (also immutable) sets. This
ought to apply to objects of any kind, not only sets. Several programming languages
already offer this mechanism in some of their data types, for instance, numbers and
strings. As an example, consider the following assignment:

x = 101

Most languages treat the number 101 as an immutable value. Languages provide no
constructs to do the following, for instance:

x.setUnitsDigit (3)
x.setTensDigit (2)

No one expects this to work, and no one expects this to be a way to transform 101 into
123. Instead, you might do the following:

x = 101 + 22

At this point, x points to the value 123, which is a completely new value and is also
immutable. Some languages extend this behavior to other data types. For instance,
Java strings are also immutable. In programs, the identity represented by x refers to
different (immutable) numbers over time. This is similar to the concept of favorite-
movies referring to different immutable sets over time.

Objects and time

As you’ve seen, objects (such as x or favorite-movies) don’t have to physically
change for programs to handle the fact that something has happened to them. As
discussed previously, they can be modeled as references that point to different
objects over time. This is the flaw that most OO languages suffer from: they conflate
identities (x or favorite-movies) and their values. Most such languages make no

Separating identities and values 141

distinction between an identity such as favorite-movies and the memory location
where the data relating to that identity is stored. A variable kyle, for example, might
directly point to the memory location containing the data for an instance of the
Person class.

In typical OO languages, when a destructive method (or procedure) executes, it
directly alters the contents of the memory where the instance is stored. Note that this
doesn’t happen when the same language deals with primitives, such as numbers or
strings. The reason no one seems to notice this difference in behavior is that most lan-
guages have conditioned programmers to think that composite objects are different
from primitives such as strings and numbers. But this isn’t how things need to be, and
there is another way. Instead of letting programs have direct access to memory loca-
tions via pointers such as favorite-movies and allowing them to change the content
of that memory location, programs should have only a special reference to immutable
objects. The only thing they should be allowed to change is this special reference
itself, by making it point to a completely different, suitably constructed object that’s
also immutable. This concept is illustrated in figure 6.2.

This should be the default behavior of all data types, not only select ones like num-
bers or strings. Custom classes defined by a programmer should also work this way.

Now that we’ve talked about this new approach to objects and mutation over time,
let’s see why this might be useful and what might be special about such references to
immutable objects.

Initial
#| value
7
7
7/
7/
/
7
e Value at
&7 | time =T1
& e
O/ N -
A,b\Q/ Pats
{\\Q , e
AN // \i\//
7 Value at
s 4(\\0 s al
LR T 2T~ time=T2
’ - L W0~
s P2 -“\8‘ A~
S0 77 poN I~
/7 -
7 -
Ref - Current pointer _ | Value at
€ ™ tme=T3
Value at
time = T4
Figure 6.2 A reference that points
ﬁ\r/:l)uf _T_ts to completely different immutable
values over time

142

6.2.3

CHAPTER 6 State and the concurrent world

Immutability and concurrency

It’s worth remembering that the troubles with concurrency happen only when multi-
ple threads attempt to update the sameshared data. In the first part of this chapter, we
reviewed the common problems that arise when shared data is mutated incorrectly in
a multithreaded scenario. The problems with mutation can be classified into two gen-
eral types:

» Losing updates (or updating inconsistent data)

= Reading inconsistent data

If all data is immutable, then we eliminate the second issue. If a thread reads some-
thing, it’s guaranteed to never change while it’s being used. The concerned thread
can go about its business, doing whatever it needs to with the data—calculating things,
displaying information, or using it as input to other things. In the context of the
example concerning favorite movies, a thread might read someone’s favorite set of
movies at a given point and use it in a report about popular movies. Meanwhile, a sec-
ond thread might update a person’s favorite movies. In this scenario, because the sets
are immutable, the second thread would create a new set of movies, leaving the first
thread with valid and consistent (and merely stale) data.

We’ve glossed over some of the technicalities involved in ensuring that this works,
and we’ll explore Clojure’s approach in much greater depth in the following sections.
In particular, threads should be able to perform repeated reads correctly, even if
another thread updated some or all of the data. Assuming things do work this way, the
read problem in a multithreaded situation can be considered solved. It leaves only the
issue of when two or more threads try to update the same data at the same time.

Solving this second problem requires some form of supervision by the language
runtime and is where the special nature of references comes into play. Because no
identity has direct access to the contents of various memory locations (which in
turn contain the data objects), the language runtime has a chance of doing some-
thing to help supervise writes. Specifically, because identities are modeled using
special references, as mentioned previously, the language can provide constructs
that allow supervised changes to these indirect references. These constructs can
have concurrency semantics, thereby making it possible for multiple threads to
update shared data correctly. The semantics can ensure more than safe writes; they
can signal errors when writes fail or enforce certain other constraints when a write
is to be made.

This isn’t possible in most other popular languages today, because they allow direct
access to (and mutation of) memory locations. A language that satisfies two require-
ments can hope to solve the concurrency problem: the first is that identities not point
directly to memory locations but do so indirectly via managed references, and the sec-
ond is that data objects themselves be immutable. The separation of identity and state
is the key. You'll see Clojure’s flavor of this approach over the next few sections.

6.3

6.3.1

Clojure’s way 143

Clojure’s way

As you saw in the previous section, there’s an alternative when it comes to modeling
identities and their state. Instead of letting an identity be a simple reference (direct
access to a memory location and its contents), it can be a managed reference that
points to an immutable value. Over the course of the program, this reference can be
made to point to other immutable values as required by the program logic. If state is
modeled this way, then the programming language facilities that allow a managed ref-
erence to point to different things can support concurrency semantics—they can
check for modified data, enforce validity, enforce that other programming constructs
be used (such as transactions), and so forth. This is exactly the Clojure way.

Clojure provides managed references to state, as described previously. It provides
four different kinds of managed references, each suitable in different situations. It
also provides language-level constructs that help in changing what these references
point to. Further, to coordinate changes to more than one reference, Clojure exposes
an interesting take on a software transactional memory (STM) system. We’ll examine
each of these in detail right after we talk about performance.

Immutability and performance

For any language to work this way (managed references, immutable objects), an impor-
tant requirement must be met—that of performance. Working with this model of state
and mutation needs to be as fast as the old way of in-place mutation. Traditional solu-
tions to this issue have been unsatisfactory, but Clojure solves it in an elegant way.

IMMUTABILITY BY COPYING

Let’s again consider the example concerning movies and multiple threads. Imagine
that the first thread is dealing with Rob’s set of favorite movies when he was a child. If
a second thread were to update his favorites to a new set, the data seen by the first
thread should still be valid. One way to achieve this is to make a copy of the object
being updated so that readers still have valid (if old) data while the writer updates it to
the new object.

The problem with this approach is that naively copying something over in this
manner is extremely inefficient. Often, the speed of such a copy operation grows lin-
early with the size of the objects being copied. If every write involved such an expen-
sive operation, it would be impossible to use in a production environment. Therefore,
given that an approach involving blind copying of data isn’t viable, the alternative
must involve sharing the data structures in question. Specifically, the new and updated
objects must in some way point to the old values while making additional changes
required to perform updates.

To make the performance requirements clearer, such an implementation must
have approximately the same performance characteristics as the old mutable imple-
mentation. For example, a hash table must behave in a constant time (or near enough)
manner. This performance guarantee must be satisfied, in addition to satisfying the

144

6.3.2

CHAPTER 6 State and the concurrent world

previous constraint that the older version still be usable. This would allow other threads
that had read the data prior to the update to continue with their job. In summary, the
requirements are that the immutable structures do the following:

m Leave the old version of itself in a usable state when it mutates

= Satisfy the same performance characteristics as the mutable versions of themselves
You’ll now see how Clojure satisfies these requirements.

PERSISTENT DATA STRUCTURES

The common use of the term persistence in computer science refers to persisting data
into a nonvolatile storage system, such as a database. But there’s another way that
term is used, one that’s quite common in the functional programming space. A persis-
tent data structure is one that preserves the previous version of itself when it’s modi-
fied. Older versions of such data structures persist after updates. Such data structures
are inherently immutable, because update operations yield new values every time.

All of the core data structures offered by Clojure are persistent. These include
maps, vectors, lists, and sets. These persistent data structures also perform extremely
well because instead of using copying, they share structure when an update needs to
be done. Specifically, they maintain nearly all the performance guarantees that are
made by such data structures, and their performance is on par with or extremely close
to that of similar data structures that are provided by the Java language.

With this implementation, Clojure has the means to provide the managed refer-
ence model for mutating state. We’ll examine this in the next section.

Managed references

Given Clojure’s efficient implementation of persistent data structures, the approach
of modeling state through managed references becomes viable. Clojure has four dis-
tinct offerings in this area, each useful in certain scenarios. Table 6.2 gives an overview
of the options available, and we’ll discuss each of these types in this order in the fol-
lowing sections.

Table 6.2 Clojure provides four different types of managed references.

Managed reference type Useful for
ref Shared, synchronous, coordinated changes
agent Shared, asynchronous, uncoordinated changes
atom Shared, synchronous, uncoordinated changes
var Isolated changes

Clojure provides a managed reference for the different situations that arise when writ-
ing programs that use multiple threads. This ranges from the case that needs to isolate
any change to within the thread making it, to the case when threads need to coordinate

6.4

6.4.1

6.4.2

Refs 145

changes that involve multiple shared data structures. In the next few sections, we’ll
examine each one in turn.

In the first section of this chapter, we examined the problems faced by multi-
threaded programs when shared data is involved. These problems are typically han-
dled using locks, and we also examined the problems associated with locks.

Managed references and language-level support for concurrency semantics offer
an alternative to locks. In the next section, we’ll examine the first of Clojure’s man-
aged references—the ref—and show how the language provides lock-free concur-
rency support.

Refs

Clojure provides a special construct in ref (short for reference) to create a managed
reference that allows for synchronous and coordinated changes to mutable data. A ref
holds a value that can be changed in a synchronous and coordinated manner. As an
example, let’s consider an expense-tracking domain.

Creating refs

First, you’ll want to create a ref to hold all the users of your imaginary system. The fol-
lowing is an example of this, and the ref'is initialized with an empty map:

(def all-users (ref {}))

At this point, all-users is a ref that points to the initial value of an empty map. You
can check this by dereferencing it using the deref function, which returns the current
value from within the ref:

(deref all-users)

i=> {}
Clojure also provides a convenient reader macro to dereference such a managed ref-

erence: the @ character. The following works the same way as calling deref:

@all-users

i=> {}
By the way, if you just ask for the value of the all-users ref, here’s what you might see:

all-users
;j=> #<Ref@227e9896: {}>

This is the ref itself, so you always have to remember to dereference it when you want
the underlying value. Now that you know how to create and read back a ref, you’re
ready to see how you can go about changing what it points to.

Mutating refs

Now, you’ll write a function that adds a new user to your existing set. Clojure’s refs can
be changed using the ref-set, alter, or commute functions.

146

CHAPTER 6 State and the concurrent world

REF-SET

ref-set is the most basic of these functions; it accepts a ref and a new value and
replaces the old value with the new. Try the following to see it in action:

(ref-set all-users {})

IllegalStateException No transaction running
clojure.lang.LockingTransaction.getEx (LockingTransaction.java:208)

Because refs are meant for situations where multiple threads need to coordinate
their changes, the Clojure runtime demands that mutating a ref be done inside an
STM transaction. An STM transaction is analogous to a database transaction but for
changes to in-memory data structures. We’ll say more about Clojure’s STM system in
the following section; for now, you’ll start an STM transaction using a built-in macro
called dosync.

You can check that this works by trying your previous call to ref-set but this time
inside the scope of a dosync:

(dosync
(ref-set all-users {}))

i=> {}

That works as expected, and you can use ref-set like this to reset your list of users.
dosync is required for any function that mutates a ref, including the other two men-
tioned earlier, alter and commute.

ALTER

Typically, a ref is mutated by taking its current value, applying a function to it, and
storing the new value back into it. This read-process-write operation is a common sce-
nario, and Clojure provides the alter function that can do this as an atomic opera-
tion. The general form of this function is

(alter ref function & args)

The first and second arguments to alter are the ref that’s to be mutated and the func-
tion that will be applied to get the new value of the ref. When the function is called,
the first argument will be the current value of the ref, and the remaining arguments
will be the ones specified in the call to alter (args).

Before examining the commute function, let’s get back to the intention of writing a
function to add a new user to your list of existing users. First, here’s a function to cre-
ate a new user:

(defn new-user [id login monthly-budget]
{:id id

:login login

:monthly-budget monthly-budget

:total-expenses 0})

This uses a Clojure map to represent a user—a common pattern used where tradi-
tional objects are needed. We've deliberately kept the representation simple; in

Refs 147

real life your users would probably be a lot more, well, real. Next, here’s the add-
user function:

(defn add-new-user [login budget-amount]
(dosync
(let [current-number (count @all-users)
user (new-user (inc current-number) login budget-amount)]
(alter all-users assoc login user))))

Note the use of dosync. As mentioned previously, it starts an STM transaction, which
allows you to use alter. In the preceding code snippet, alter is passed the all-users
ref, which is the one being mutated. The function you pass it is assoc, which takes a
map, a key, and a value as parameters. It returns a new map with that value associated
with the supplied key. In this case, your newly created user gets associated with the
login name. Note that while the first argument to alter is the all-users ref itself,
assoc will receive the current value of the ref all-users.

Further note that the code includes the entire let form inside the transaction
started by dosync. The alternative would have been to call only alter inside the
dosync. Clojure wouldn’t have complained because dereferencing a ref (@all-users)
doesn’t need to happen inside a transaction. You do this to ensure that you see a con-
sistent set of users. You want to avoid the buried update problem where two threads
read the count and one thread commits a new user (increasing the real count), caus-
ing the other thread to commit a new user with a duplicate ID. Here’s the functional-
ity in action:

(add-new-user "amit" 1000000)
;=> {"amit" {:id 2, :login "amit", :monthly-budget 1000000, :total-expenses 0}}

Notice that alter returns the final state of the ref. If you now call it again, you’ll see
the following:

(add-new-user "deepthi"™ 2000000)
;=> {"deepthi" {:id 3, :login "deepthi", :monthly-budget 2000000,
:total-expenses 0},
"amit" {:id 2, :login "amit", :monthly-budget 1000000,
:total-expenses 0}}

As you can see, the ref is mutating as expected. One final note: except for the :id
value it doesn’t matter in what order you add users in the previous example. If two
threads were both trying to add a user to your system, you wouldn’t care in what order
they’re added. Such an operation is said to be commutative, and Clojure has opti-
mized support for commutes.

COMMUTE

When two threads try to mutate a ref using either ref-set or alter, and one of them suc-
ceeds (causing the other to fail), the second transaction starts over with the latest value of
the ref in question. This ensures that a transaction doesn’t commit with inconsistent val-
ues. The effect of this mechanism is that a transaction may be tried multiple times.

148

6.4.3

CHAPTER 6 State and the concurrent world

For those situations where it doesn’t matter what the most recent value of a ref is
(only that it’s consistent and recent), Clojure provides the commute function. The
name derives from the commutative property of functions, and you might remember
this from your high school math classes. A function is commutative if it doesn’t matter
in which order the arguments are applied. For example, addition is commutative,
whereas subtraction isn’t:

a+b=>b+ a
a-b!=Db-a

The commute function is useful where the order of the function application isn’t
important. For instance, imagine that a number was being incremented inside a trans-
action. If two threads were to go at it in parallel, at the end of the two transactions, it
wouldn’t matter which thread had committed first. The result would be that the num-
ber was incremented twice.

When the alter function is applied, it checks to see if the value of the ref has
changed because of another committed transaction. This causes the current transac-
tion to fail and for it to be retried. The commute function doesn’t behave this way;
instead, execution proceeds forward and all calls to commute are handled at the end of
the transaction. The general form of commute is similar to alter:

(commute ref function & args)

As explained earlier, the function passed to commute should be commutative. Similar
to alter, the commute function also performs the read-apply-write operation on one
atomic swoop.

You’ve now seen the three ways in which a ref can be mutated. In showing these,
we’ve mentioned STM transactions quite a bit. In the next section, you’ll learn a little
more about Clojure’s implementation of the STM system.

Software transactional memory

A common solution to the problems of shared data and multithreading is the (care-
ful) use of locks. But this approach suffers from several problems, as we already dis-
cussed. These issues make using locks messy and error prone while also making code
based on locks infamously difficult to debug.

STM is a concurrency control mechanism that works in a fashion similar to data-
base transactions. Instead of controlling access to data stored on disks, inside tables
and rows, STMs control access to shared memory. Using an STM system offers many
advantages to multithreaded programs, the most obvious being that it’s a lock-free
solution. You can think of it as getting all the benefits of using locks but without any of
the problems. You also gain increased concurrency because this is an optimistic
approach compared with the inherently pessimistic approach of locking.

In this section, you’ll get a high-level overview of what STM is and how it works.

Refs 149

STM TRANSACTIONS

Lock-based solutions prevent more than one thread from executing a protected part
of the code. Only the thread that acquired the right set of locks is allowed to execute
code that has been demarcated for use with those locks. All other threads that want
to execute that same code block it until the first thread completes and relinquishes
those locks.

An STM system takes a nearly opposite approach. First, code that needs to mutate
data is put inside a transaction. In the case of Clojure, this means using the dosync
macro. Once this is done, the language runtime takes an optimistic approach in let-
ting threads execute the transaction. Any number of threads are allowed to begin the
transaction. Changes made to refs within the transaction are isolated, and only the
threads that made the changes can see the changed values.

The first thread that completely executes the block of code comprising the transac-
tion is allowed to commit the changed values. Once a thread commits, when any other
thread attempts to commit, that transaction is aborted and the changes are rolled back.

The commit performed when a transaction is successful is atomic in nature. This
means that even if a transaction makes changes to multiple refs, as far as the outside
world is concerned, they all appear to happen at the same instant (when the transac-
tion commits). STM systems can also choose to retry failed transactions, and many do
so until the transaction succeeds. Clojure also supports this automatic retrying of
failed transactions, up to an internal limit.

Now that you know how transactions work at a high level, let’s recap an important
set of properties that the STM system exhibits.

ATOMIC, CONSISTENT, ISOLATED

The Clojure STM system has ACI properties (atomicity, consistency, isolation). It doesn’t
support durability because it isn’t a persistent system and is based on volatile, in-memory
data. To be specific, if a transaction mutates several refs, the changes become visible to
the outside world at one instant. Either all the changes happen, or, if the transaction
fails, the changes are rolled back and no change happens. This is how the system sup-
ports atomicity.

When refs are mutated inside a transaction, the changed data is called in-transaction
values. This is because they’re visible only to the thread that made the changes inside
the transaction. In this manner, transactions isolate the changes within themselves
(until they commit).

If any of the refs are changed during the course of a transaction, the entire trans-
action is retried. In this manner, the STM system supports consistency. For extra pro-
tection, Clojure’s refs (and also agents and atoms) accept validator functions when
created. These functions are used to check the consistency of the data when changes
are made to it. If the validator function fails, the transaction is rolled back.

Before moving onto the other types of managed references in Clojure, we’ll make
one final point about the STM.

150

6.5

6.5.1

CHAPTER 6 State and the concurrent world

mvcc
Clojure’s STM system implements multiversion concurrency control (MVCC). This is

the type of concurrency supported by several database systems such as Oracle and
PostgreSQL. In an MVCC system, each contender (threads in the case of Clojure) is
given a snapshot of the mutable world when it starts its transaction.

Any changes made to the snapshot are invisible to other contenders until the
changes are committed at the end of a successful transaction. But thanks to the snap-
shot model, readers never block writers (or other readers), increasing the inherent
concurrency that the system can support. In fact, writers never block readers either,
thanks to the same isolation. Contrast this with the old locking model where both
readers and writers block while one thread does its job.

Having seen the way managed references work in Clojure and also how the associ-
ated mechanism of the STM works, you can write multithreaded programs that need
to coordinate changes to shared data. In the next section, we’ll examine a method to
mutate data in an uncoordinated way.

Agents

Clojure provides a special construct called an agent that allows for asynchronous and
independent changes to shared mutable data. For instance, you may want to time the
CPU while it executes some code of interest. In this section, you’ll see how to create,
mutate, and read agents. The agent function allows the creation of agents, which hold
values that can be changed using special functions. Clojure provides two functions,
send and send-off, that result in mutating the value of an agent. Both accept the
agent that needs to be updated, along with a function that will be used to compute the
new value. The application of the function happens at a later time, on a separate
thread. By corollary, an agent is also useful to run a task (function) on a different
thread, with the return value of the function becoming the new value of the agent.
The functions sent to agents are called actions.

Creating agents

Creating an agent is similar to creating a ref. As mentioned, the agent function allows
you to create an agent:

(def total-cpu-time (agent 0))
Dereferencing an agent to get at its current value is similar to using a ref:

(deref total-cpu-time)
;=> 0

Clojure also supports the @ reader macro to dereference agents, so the following is
equivalent to calling deref:

@total-cpu-time
;=> 0

6.5.2

Agents 151

Having created an agent, let’s see how you can mutate it.

Mutating agents

As described in the preceding paragraphs, agents are useful when changes to a partic-
ular state need to be made in an asynchronous fashion. The changes are made by
sending an action (a regular Clojure function) to the agent, which runs on a separate
thread at a later time. There are two flavors of this—send and send-off—and we’ll
examine them both.

SEND
The general form of the send function is as follows:

(send the-agent the-function & more-args)

As an example, consider adding a few hundred milliseconds to the total-cpu-time
agent you created earlier:

(send total-cpu-time + 700)

The addition operator in Clojure is implemented as a function, no different from reg-
ular functions. The action function sent to an agent should accept one or more
parameters. When it runs, the first parameter it’s supplied is the current value of the
agent, and the remaining parameters are the ones passed via send.

In this example, the + function is sent to the total-cpu-time agent, and it uses the
current value of the agent (which is 0) as the first argument and 700 as the second
argument. At some point in the future, although it isn’t noticeable in the example
because it happens almost immediately, the + function executes and the new value of
total-cpu-time will be set as the value of the agent. You can check the current value
of the agent by dereferencing it:

(deref total-cpu-time)
;=> 700

If the action takes a long time to run, it may be a while before dereferencing the
agent shows the new value. Dereferencing the agent before the agent runs will con-
tinue to return the old value. The call to send itself is nonblocking, and it returns
immediately.

Actions sent to agents using send are executed on a fixed thread pool maintained
by Clojure. If you send lots of actions to agents (more than the number of free threads
in this pool), they get queued and will run in the order in which they were sent. Only
one action runs on a particular agent at a time. This thread pool doesn’t grow in size,
no matter how many actions are queued up. This is depicted in figure 6.3. This is why
you should use send for actions that are CPU intensive and don’t block, because block-
ing actions will use up the thread pool. For blocking actions, Clojure provides another
function—send-of f—and we’ll look at that now.

152

6.5.3

CHAPTER 6 State and the concurrent world

Call tosend

Fixed
Queu_ed ?ue?ed ?uel;ed ?ueged thread pool
> function unction unction unction (for send)

Figure 6.3 The thread pool used for the send function is fixed based on
the number of cores available. If all the threads are busy, then functions
get queued.

SEND-OFF
The function send-off can handle potential blocking actions. The general form of
the send-off function is exactly the same as for send:

(send-off the-agent the-function & more-args)

The semantics of what happens when send-off is called are the same as that of send,
the only difference being that it uses a different thread pool from the one used by
send, and this thread pool can grow in size to accommodate more actions sent using
send-off. Again, only one action runs on a particular agent at a time.

We’ll now look at a few convenient constructs provided by Clojure that are useful
when programming using agents.

Working with agents

This section will examine a few functions that come in handy when working with
agents. First, a common scenario when using agents to do work asynchronously is that
several actions are sent (using either send or send-off), and then one waits until they
all complete. Clojure provides two functions that help in this situation: await and
await-for.

Next, we’ll look at ways to test agents for errors. After all, you can send any function
to an agent, which means you can send any arbitrary code to the agent thread pools. If
your code throws an error, there needs to be a way to examine what went wrong.

And finally, another common use case is that a notification is desired when an
action sent to an agent completes successfully. This is where watchers come in. You'll
see how the value of an agent can be kept consistent by validating it with some busi-
ness rules each time an attempt is made to change it.

Agents 153

AWAIT AND AWAIT-FOR
await is a function that’s useful when execution must stop and wait for actions that
were previously dispatched to certain agents to be completed. The general form is

(await & the-agents)

As an example, let’s say you had agents named agent-one, agent-two, and agent-
three. Let’s also say you sent several actions to these three agents, either from your
own thread, other threads, or from another agent. At some point, you could cause the
current thread to block until all actions sent to your three agents completed, by doing
the following:

(await agent-one agent-two agent-three)

await blocks indefinitely, so if any of the actions didn’t return successfully, the cur-
rent thread wouldn’t be able to proceed. To avoid this, Clojure also provides the
await-for function. The general form looks similar to that of await, but it accepts a
maximum timeout in milliseconds:

(await-for timeout-in-millis & the-agents)

Using await-for is safer in the sense that the max wait time can be controlled. If the
timeout does occur, await-for returns nil. Here’s an example:

(await-for 1000 agent-one agent-two agent-three)

This will abort the blocking state of the thread if the timer expires before the actions
have completed. It’'s common to check if the actions succeeded or not by testing the
agents for any errors after using await-for.

AGENT ERRORS

When an action doesn’t complete successfully (it throws an exception), the agent
knows about it. If you try to dereference an agent that’s in such an error state, it will
return the previous successful result. Take a look:

(def bad-agent (agent 10))

This sets up an agent with an initial value of 10. You’ll now send it an action that will
cause an error, leaving the agent in an error state:

(send bad-agent / 0)
;j=> #<Agent@l25b%9ecl FAILED: 10>

Notice the agent is in the FAILED state, with an unchanged value of 10 (caused by the
intentional divide-by-zero error). You can now try to dereference bad-agent:

(deref bad-agent)
;=> 10

154

CHAPTER 6 State and the concurrent world

Further, if you now try to send it another action, even if it might have succeeded, the
agent will complain about its error state, for instance:
(send bad-agent / 2)

ArithmeticException Divide by zero clojure.lang.Numbers.divide
(Numbers.java:156)

You can always programmatically discern what the error is by using the agent-error
function:

(agent-error bad-agent)
;=> #<ArithmeticException java.lang.ArithmeticException: Divide by zero>

agent-error returns the exception thrown during the agent thread’s execution. The
error object returned is an instance of the particular exception class corresponding to
the error that happened and can be queried using Java methods, for example:
(let [e (agent-error bad-agent)
st (.getStackTrace e)]

(println (.getMessage e))
(println (clojure.string/join "\n" st)))

As mentioned, if an agent has an error, you can’t send it any more actions. If you do,
Clojure throws the same exception, informing you of the current error. To make the
agent usable again, Clojure provides the clear-agent-errors function:

(clear-agent-errors bad-agent)

The agent is now ready to accept more actions.

VALIDATIONS
You've seen how to create new agents. You can create them with more options as well.
Here’s the complete general form of the agent function that creates new agents:

(agent initial-state & options)

The options allowed are

:meta metadata-map
:validator validator-fn

If the :meta option is used, then the map supplied with it will become the metadata of
the agent. If the :validator option is used, it should be accompanied by either nil or
a function that accepts one argument. The validator-£fn is passed the intended new
state of the agent, and it can apply any business rules to allow or disallow the change
to occur. If the validator function returns false or throws an exception, then the state
of the agent isn’t mutated.

You’ve now seen how agents can be used in Clojure. Before moving on to the next
kind of managed reference, you’ll see how agents can also be used to cause side effects
from inside STM transactions.

6.5.4

6.6

6.6.1

Atoms 155

Side effects in STM transactions

We said earlier that Clojure’s STM system automatically retries failed transactions.
After the first transaction commits, all other transactions that had started concur-
rently will abort when they, in turn, try to commit. Aborted transactions are then
started over. This implies that code inside a dosync block can potentially execute mul-
tiple times before succeeding, and for this reason, such code shouldn’t contain side
effects. If you do, you can expect the side effect to also occur multiple times. There’s
no way to alter this behavior, so you have to be careful that you don’t do this.

As an example, if there was a call to print1n inside a transaction, and the transac-
tion was tried several times, the print1n will be executed multiple times. This behav-
ior would probably not be desirable.

There are times when a transaction does need to generate a side effect. It could be
logging or anything else, such as writing to a database or sending a message on a
queue. Agents can be used to facilitate such intended side effects. Consider the follow-
ing pseudo-code:

(dosync
(send agent-one log-message args-one)
(send-off agent-two send-message-on-queue args-two)

(alter a-ref ref-function)
(some-pure-function args-three))

Clojure’s STM system holds all actions that need to be sent to agents until transactions
succeed. In the pseudo-code shown here, log-message and send-message-on-queue
are actions that will be sent only when the transaction succeeds. This ensures that
even if the transaction is tried multiple times, the side effect causing actions gets
sent only once. This is the recommended way to produce side effects from within
a transaction.

This section walked through the various aspects of using agents. You saw that
agents allow asynchronous and independent changes to mutable data. The next kind
of managed reference is called an atom, which allows for synchronous and indepen-
dent changes to mutable data.

Atoms

Clojure provides a special construct in an atom that allows for synchronous and inde-
pendent changes to mutable data. The difference between an atom and an agent is
that updates to agents happen asynchronously at some point in the future, whereas
atoms are updated synchronously (immediately). Atoms differ from refs in that changes
to atoms are independent from each other and can’t be coordinated, so they either all
happen or none do.

Creating atoms

Creating an atom looks similar to creating either refs or agents:

(def total-rows (atom 0))

156

6.6.2

CHAPTER 6 State and the concurrent world

total-rows is an atom that starts out being initialized to zero. You could use it to hold
the number of database rows inserted by a Clojure program as it restores data from a
backup, for example. Reading the current value of the atom uses the same derefer-
encing mechanism used by refs and agents:

(deref total-rows)
;=> 0

Or it uses the @ reader macro:

@total-rows
;=> 0

Now that you've seen how to create atoms and read their values, let’s address mutat-
ing them.

Mutating atoms

Clojure provides several ways to update the value of an atom. There’s an important
difference between atoms and refs, in that changes to one atom are independent of
changes to other atoms. Therefore, there’s no need to use transactions when attempt-
ing to update atoms.

RESET!
The reset! function doesn’t use the existing value of the atom and simply sets the
provided value as the new value of the atom. The general form of the function is

(reset! atom new-value)

This might remind you of the ref-set function, which also does the same job but
for refs.

SWAP!
The swap! function has the following general form:

(swap! the-atom the-function & more-args)

You could pass swap! the addition function whenever you finish inserting a batch
of rows:

(swap! total-rows + 100)

Here, in a synchronous manner, the + function is applied to the current value of
total-rows (which is zero) and 100. The new value of total-rows becomes 100. If
you were to use a mutation function that didn’t complete before another thread
changed the value of the atom, swap! would then retry the operation until it did suc-
ceed. For this reason, mutation functions should be free of side effects.

Clojure also provides a lower-level function called compare-and-set! that can be
used to mutate the value of an atom. swap! internally uses compare-and-set!.

6.7

6.7.1

Vars 157

COMPARE-AND-SET!
Here’s the general form of the compare-and-set! function:

(compare-and-set! the-atom old-value new-value)

This function atomically sets the value of the atom to the new value, if the current
value of the atom is equal to the supplied old value. If the operation succeeds, it
returns true; otherwise it returns false. A typical workflow of using this function is to
dereference the atom in the beginning, do something with the value of the atom, and
then use compare-and-set! to change the value to a new one. If another thread had
changed the value in the meantime (after it had been dereferenced), then the muta-
tion would fail.

The swap! function does that internally: it dereferences the value of the atom,
applies the provided mutation function, and attempts to update the value of the atom
using compare-and-set! by using the value that was previously dereferenced. If
compare-and-set! returns false (the mutation failed because the atom was updated
elsewhere), the swap! function reapplies the mutation function until it succeeds.

Atoms can be used whenever there’s a need for some state but not for coordina-
tion with any other state. Using refs, agents, and atoms, all situations that demand
mutation of shared data can be handled. Our last stop will be to study vars, because
they’re useful when state needs to be modified but not shared.

Vars

We introduced vars in chapter 3. In this section, we’ll take a look at how vars can be
used to manage state in an isolated (thread-local) manner.

Creating vars and root bindings

Vars can be thought of as pointers to mutable storage locations, which can be updated
on a per-thread basis. When a var is created, it can be given an initial value, which is
referred to as its root binding:

(def hbase-master "localhost")

In this example, hbase-master is a var that has a binding of "localhost". Here, it acts
as a constant. You could also use it as a special var, by declaring it as follows:

(def “:dynamic *hbase-master* "localhost")

The starting and ending asterisks are conventions that denote that this var ought to be
rebound before use. (If you name a var like this but without *:dynamic, Clojure will
emit a warning.) In normal use dynamic vars are just like normal vars:

(def “:dynamic *hbase-master* "localhost")
;=> #'user/*hbase-master*

(println "Hbase-master is:" *hbase-master*)
Hbase-master is: localhost

;=> nil

158 CHAPTER 6 State and the concurrent world

Also just like normal vars, if you attempt to use a dynamic var without a root binding
you’ll get a special Unbound object:?

(def *:dynamic *rabbitmg-host*)
;=> #'user/*rabbitmg-host*
(println "RabbitMQ host is:" *rabbitmg-host*)

RabbitMQ host is: #<Unbound Unbound: #'user/*rabbitmg-host*> ?bucanteﬁﬁfavar
;=> nil is bound using the

(bound? #'*rabbitmg-host*) bound? function.
;=> false

Now that you know how to make a dynamic var, we’ll review how to rebind its value.

6.7.2 Var bindings

Whether a var has a root binding or not, when the binding form is used to update the
var, that mutation is visible only to that thread. If there was no root binding, other
threads would see no root binding; if there was a root binding, other threads would
continue to see that value. Let’s look at an example. You’ll create a function that will
fetch the number of rows in a Users table from different databases: test, development,
and staging. Imagine that you define the database host using a var like so:

(def *:dynamic *mysgl-host*)

This var has no root binding, so it will need to be bound before use. You’ll do thatin a
function that’s meant to do a database query, but for the purposes of this example it
will return some dummy data such as the length of the hostname. In the real world,
you’d run the query against the database using something like a JDBC library:

(defn db-query [db]

(binding [*mysgl-host* db]
(count *mysqgl-host*)))

Next, you'll create a list of the hosts you want to run your function against:
(def mysgl-hosts ["test-mysgl" "dev-mysgl" "staging-mysqgl"])
Finally, you could run your query function against all the hosts:

(pmap db-query mysgl-hosts)
;=> (10 9 13)

pmap works like map, but each time the supplied function is called on an element of
the list, it’s done so on a different available thread from an internally maintained
thread pool. The call to binding sets up *mysqgl-host* to point to a different host, and
the query function proceeds appropriately. Each execution of the db-query function
sees a different value of *mygl-host*, as expected.

2 In earlier versions of Clojure, using an unbound var would throw an exception.

State and its unified access model 159

We’ve covered the four different options that Clojure offers when it comes to con-
currency, state, and performing updates—refs, agents, atoms, and vars—and some dif-
ferent scenarios in which each would be useful. You’ll eventually run into a situation
where depending on your situation, one of these is a good fit, and you’ll be grateful
for Clojure’s language-level support for lock-free concurrency.

6.8 State and its unified access model

This section is a quick recap of the constructs Clojure offers for managing state. We
covered each of them over the past few sections, and it’s now possible to make an
observation. All of the constructs for managing state enjoy a unified access model that
allows you to manage them similarly. This is true whether the managed reference is a
ref, an agent, or an atom. Let’s take another quick look at these functions.

6.8.1 Creating

Here are the functions that can create each type of managed reference:
(def a-ref (ref 0))

(def an-agent (agent 0))
(def an-atom (atom 0))

Notice how each accepts an initial value during creation.

6.8.2 Reading

All three kinds of references can be dereferenced the same way:

(deref a-ref) or @a-ref
(deref an-agent) or @an-agent
(deref an-atom) or @an-atom

This uniformity makes Clojure’s references easier to use, because they work in such a
similar manner. Let’s also recap how their values can be changed.

6.8.3 Mutation

Changing a managed reference in Clojure always follows the same model: a function
is applied to the current value, and the return value is set as the new value of the refer-
ence. Table 6.3 shows the functions that allow such mutation.

Table 6.3 Ways to mutate refs, agents, and atoms

Refs Agents Atoms
(ref-set ref new-value) (send agent function (reset! atomnew-value)
(alter ref function & & args) (swap! atom function &
args) (send-off agent args)
(commute ref function & function & args) (compare-and-set! atom
args) old-value new-value)

160

6.8.4

6.8.5

CHAPTER 6 State and the concurrent world

While we’re on the topic of mutation, it’s worthwhile to note that Clojure provides a
hook, which can be used to run arbitrary code when a reference changes state. This
mechanism works for refs, agents, atoms, and vars.

Transactions

Finally, there’s the question of which references need transactions and which don’t.
Because refs support coordinated changes, mutating them needs the protection of
STM transactions: all such code needs to be inside the dosync macro. Agents and
atoms don’t need STM transactions. Functions used to calculate new values of refs or
atoms must be free of side effects, because they could be retried several times.

Watching for mutation

Sometimes it’s useful to add an event listener that gets notified when the value of a
stateful construct changes. Clojure provides the add-watch function for this purpose.

ADD-WATCH
The add-watch function allows you to register a regular Clojure function as a “watcher”
against any kind of reference. When the value of the reference changes, the watcher
function is run.

The watcher must be a function of four arguments:

= A key to identify the watcher (the-key)

» The reference it’s being registered against (the-ref)
m The old value of the reference (old-value)

= The new value of the reference (new-value)

The add-watch function itself accepts three arguments: the reference to watch, a key
to identify the watch you’re adding, and the watcher function. You can use the key argu-
ment to remove the watch later. Here it is in action:

(def adi (atom 0))
(defn on-change [the-key the-ref old-value new-valuel]

(println "Hey, seeing change from" old-value "to" new-value))
(add-watch adi :adi-watcher on-change)

Now that it’s all set up, you can test it. You’ll check the current value of adi and then
update it:

@adi

;=> 0

(swap! adi inc)

Hey, seeing change from 0 to 1
;=>1

As mentioned before, this can be used for all of Clojure’s special-managed references.

6.9

Deciding which reference type to use 161

REMOVE-WATCH

It’s also possible to remove a watch if it’s no longer required. Clojure provides the
remove-watch function to do this. Using it is simple: call remove-watch with the refer-
ence to stop watching and the key you used in the add-watch call. The following
example removes the watch you added earlier:

(remove-watch adi :adi-watcher)

Deciding which reference type to use

We have now covered all four options Clojure gives you for managing state mutation.
You may be a little dizzy with choices and unsure which to use for any given problem.
Here’s a guide to your decision making.

The most basic reference type is the var. It’s only useful for isolating changes
(either to a particular thread or a particular scope of code), not coordinating or shar-
ing those changes. When you have an ordinarily global variable (such as a database
connection or configuration map) but just need to change it to another value for a
particular run of code, use a dynamic var with binding to rebind its value. But vars
can’t be written to by multiple parts of your code.

Atoms are one step more powerful than vars: they’re the simplest way to manage a
state change that must be written to and read by multiple threads. The vast majority of
the time you’ll be using atoms because you don’t need anything more. But they have
two drawbacks. First, multiple atoms cannot be changed together in an atomic and
coordinated way. Second, changes to an atom must be free of side effects because its
swap! function may be run multiple times. If you need coordination or side effects,
you need to use one of the remaining two options.

Refs are atoms with coordination. Instead of using a giant atom, you can split up
your state into multiple refs and read and write to several of them atomically inside a
dosync transaction. If you have multiple pieces of shared state that must be updated
together but rarely all of them in a single transaction, you can reduce the amount of
contention in your application and increase concurrency. (This is similar to the
tradeoff you’d make when deciding to use a single big lock or multiple smaller locks.)
Refs add coordination to atoms, but like atoms all changes to them inside a transac-
tion must be free of side effects because the transaction may be retried.

Agents are the only reference type that can tolerate side effects, but the cost for
this ability is more complex management. Because side-effecting operations cannot
be safely retried, agents have error states that must be checked and cleared if their
operation fails. Additionally, the side-effecting action runs asynchronously: you must
explicitly send a mutation function to run and wait a possibly indefinite amount of
time for it to complete in another thread. But agents can be easily combined with refs
inside dosync if you have a mostly pure mutation (using refs) with just a little bit of
side effect that must be done only when the transaction is successful (using an agent).

We’ve completed our examination of Clojure’s reference types. In the next section
we’ll look at another mechanism Clojure provides just to increase concurrency.

162 CHAPTER 6 State and the concurrent world

6.10 Futures and promises

A future is an object that represents the result of a function that will execute on a dif-

ferent thread. A promise is an object that represents a value that will be delivered to it

at some point in the future. Clojure provides futures and promises as easy ways to

increase concurrency in your program. But they aren’t really for state management

because unlike reference types they can only ever have one value. What distinguishes

futures and promises from ordinary values is that their value may not yet be known.
We’ll explore the use of futures first.

6.10.1 Futures

A future is a simple way to run code on a different thread, and it’s useful for long-
running computations or blocking calls that can benefit from multithreading. To under-
stand how to use it, examine this contrived function that takes more than 5 seconds
to run:

(defn long-calculation [numl num2]
(Thread/sleep 5000)
(* numl num2))

Now that you have this slow-running function, let’s imagine you needed to run multi-
ple such computations. The code might look like the following:

(defn long-run []
(let [x (long-calculation 11 13)
y (long-calculation 13 17)
z (long-calculation 17 19)]
(* x y 2)))

If you run this in the read-evaluate-print loop (REPL) and use time to see how long
this takes, you might see something like this:
(time (long-run))

"Elapsed time: 14998.165 msecs"
;=> 10207769

Now, you can see the long-run will benefit from being multithreaded. That’s where
futures come in. The general form of a future is

(future & body)

It returns an object that will invoke body on a separate thread.? The returned object
can be dereferenced for the value of body. The deref asking for the value will block

¥ You may remember that vars can have different values in different threads and different dynamic scopes. The
code run in a future or an agent will always see the vars as having the value of the context that created the
future or sent to an agent at the moment future or send/send-off is called. Thus you can create a future
or call send inside a binding and rest easy that the value of the binding will be the same inside the future or
agent’s thread.

6.10.2

Futures and promises 163

until the result is available. The result of the computation is cached, so subsequent
queries for the value are immediate. Now you’ll write a faster version of the long-
run function:

future creates a thread that

0] will run long calculation

(defn fast-run . A
without blocking current thread.

(let [x (future (long-calculation 11 13))

y (future (long-calculation 13 17)) ﬂ——’ Futures x, y, and z can
'y ’

z (future (long-calculation 17 19))] potentially all run in parallel.

(* @ex @y @z)))
Each dereference here
will block in order listed.

You need to test this using the time function as well. If none of the futures can run in
parallel (such as on a single-core machine) this may still take 15 seconds, but if you
have at least four cores on your machine you may find that the entire operation com-
pletes in 5 seconds:

(time (fast-run))
"Elapsed time: 5000.078 msecs"
;=> 10207769

As you can see, futures are a painless way to get things to run on a different thread.
Here are a few future-related functions Clojure provides:

= future?—Checks to see if the object is a future, and returns true if it is.

= future-done?—Returns true if the computation represented by this future
object is completed.

m future-cancel—Attempts to cancel this future. If it has already started execut-
ing, it doesn’t do anything.

m future-cancelled?—Returns true if the future has been cancelled.

So you can use futures whenever you need something to run asynchronously on a dif-
ferent thread. As you’ve seen, Clojure makes this very straightforward. Let’s cover
promises next.

Promises

A promise is an object that represents a commitment that a value will be delivered to
it. You create one using the no-argument promise function:

(def p (promise))

To ask for the promised value, you can dereference it:

(def value (deref p))

Or, as usual, you can use the reader macro version of dereferencing:

@p

164

6.11

CHAPTER 6 State and the concurrent world

WARNING Don’t dereference the preceding promise at the REPL; it will block
and you’ll have no way to unblock it!

The way the value delivery system works is via the use of the deliver function. The
general form of this function is

(deliver promise value)

Typically, this function is called from a different thread, so it’s a great way to commu-
nicate between threads. The deref function (or the reader macro version of it) will
block the calling thread if no value has been delivered to it yet. The thread automati-
cally unblocks when the value becomes available. Here’s an example of delivering a
value to a promise via a future:

Promises always start out with no value,
so promise is a no-argument function.

(let [p (promise)]
(future (Thread/sleep 5000)
(deliver p :done))

4_1 Run this future only for side effects

ap) (deliver); don’t bind it to a variable.
i)

i=> :done Dereferencing promise will block 5 seconds, then

return the : done value after promise receives it.

Together, futures and promises are ways to write concurrent programs that need to pass
data between threads in a simple way. They’re nice, complementary additions to the
various other concurrency semantics you saw earlier in this chapter.

Summary

We’ve covered some fairly heavy material in this chapter! We began with a look at the
new reality of an increasing number of cores inside CPUs and the need for increas-
ingly multithreaded software. We then looked at some of the problems encountered
when programs have more than one thread of execution, specifically when these
threads need to make changes to shared data. We looked at the traditional way of solv-
ing these problems—using locks—and then briefly looked at the new problems that
they introduce.

Finally, we looked at Clojure’s approach to these issues. It has a different approach
to state, one that involves immutability. Changes to state are modeled by carefully
changing managed references so that they point to different immutable values over
time. And because the Clojure runtime itself manages these references, it’s able to
offer the programmer a great deal of automated support in their use.

First, data that needs to change must use one of the four options that Clojure
offers. This makes it explicit to anyone reading the code in the future. Next, it offers a
STM system that helps in making coordinated changes to more than one piece of data.
This is a huge win, because it’s a lock-free solution to a hairy problem!

Clojure also offers agents and atoms, which allow independent changes to mutable
data. These are different in that they’re asynchronous and synchronous, respectively,

Summary 165

and each is useful in different situations. Finally, Clojure offers vars that can be used
where changes to data need to be isolated within threads. The great thing is that
despite offering options that are quite different from each other, they have a uniform
way of creating and accessing the data inside them.

Clojure’s approach to state and mutation is an important step forward in terms of
the current status quo of dealing with state and multithreaded programming. As we
discussed in section 6.2, most popular OO languages confuse identities and state,
whereas Clojure keeps them distinct. This allows Clojure to provide language-level
semantics that make concurrent software easier to write (and read and maintain) and
more resilient to bugs that afflict lock-based solutions.

Evolving Clojure
through macros

This chapter covers

®m A deep dive into macros
m Macro examples from within Clojure
m Writing your own macros

Macros are the most distinguishing feature of Clojure when compared to languages
such as Java and Ruby. Macros make possible things that can only be dreamed of in
other languages. The macro system is why Lisp is known as the programmable pro-
gramming language, and this chapter will show you how you can grow your own
language on top of Clojure. Macros are a useful ingredient in bottom-up program-
ming, the approach where an application is written by first modeling low-level enti-
ties in a domain and then combining them to create complex ones. Understanding
and using macros well is the key to becoming a master Clojure programmer.

If you talk to seasoned Lisp or Clojure programmers, you’ll find that opinion
about the use of macros varies a great deal. Some say that macros are almost too
powerful and that they should be used with great caution. I've always thought
that any feature of a programming language can be misused when it isn’t fully
understood. Further, the advantages of using macros far outweigh the perceived

166

7.1

711

Macro basics 167

disadvantages. After all, the whole point of Clojure being homoiconic is to make the
macro system possible.

This chapter discusses what macros are and how to use them. We’ll begin with an
example macro, which will help you explore Clojure’s macro-writing facilities. Then,
we’ll dig into the Clojure source code to examine a few well-written macros. It’s inspir-
ing to learn that large parts of Clojure itself are written as macros and that you can use
this facility in your own programs. Finally, you’ll write a few macros of your own. We’ll
begin with explaining what a macro is and why a language might need a macro system.

Macro basics

To explain what a macro is, we’ll take a step back and examine language runtimes
again. Recall from chapter 1 that the Clojure runtime processes source code differ-
ently compared to most other languages. Specifically, there’s a read phase followed by
an evaluation phase. In the first phase, the Clojure reader converts a stream of charac-
ters (the source code) into Clojure data structures. These data structures are then
evaluated to execute the program. The trick that makes macros possible is that Clo-
jure offers a hook between the two phases, allowing the programmer to process the
data structures representing the code before they’re evaluated. Figure 7.1 illustrates
these phases.

Source code Data structures
T» Read Q - Evaluate
Programmer has control Programmer has control
via text input. via the macro system.

Figure 7.1 Phases of the Clojure runtime. This separation is what makes
the macro system possible.

Code is converted into data structures and these data structures are then evaluated.
Macros are functions that the programmer can write that act upon these data struc-
tures before they’re evaluated. Macros allow code to be modified programmatically
before evaluation, making it possible to create whole new kinds of abstractions. Mac-
ros operate at the syntactic level by operating on the code itself. Consequently, you
can use them to add features to Clojure, the language. You’ll see examples of this in
this chapter.

Textual substitution

As an example, imagine that you had a ref called a-ref:

(def a-ref (ref 0))

168

712

CHAPTER 7 Evolving Clojure through macros

Now, imagine that you wanted to change the value of a-ref to 1. You might do some-
thing like this:

(dosync
(ref-set a-ref 1))

Remember that code is data, which means that this code snippet is just a list contain-
ing symbols and other lists—the first one being dosync, followed by a nested list where
the symbols are ref-set, a-ref, and 1.

Even if your program used only the single ref shown here, the need to wrap every
call to ref-set in a dosync would quickly become tedious. In the real world, you
could use an atom, but using a ref is acceptable for the purposes of this example. You
could write a macro called sync-set that wouldn’t need a dosync when called and
then would do what ref-set does.

You could implement this using a macro called sync-set that manipulates the
code as data to insert the required dosync in the appropriate place. The following call
would be transformed into the previous one:

(sync-set a-ref 1)

Now, you’ll write the macro. Recall that new lists can be created using the 1ist func-
tion and that things can be quoted using the ' macro character, for instance:
(defmacro sync-set [r V]

(list 'dosync
(list 'ref-set r v)))

A macro definition looks like a function definition. Internally, macros are functions,
tagged as macros via metadata. The difference between functions and macros is that
functions execute to return a value, whereas macros execute to return s-expressions
that in turn are evaluated to return a value.

An important point to note is that macros operate well before evaluation time and
have no notion of what values might be passed in as arguments later on. For instance,
you couldn’t dereference a-ref and output different kinds of s-expressions depend-
ing on the value, because during macro expansion time there’s no ref, just the sym-
bols r and v. Macros operate on symbols directly, and this is why they’re useful for
symbolic manipulation of code.

All this might seem a bit much to achieve the functionality provided by sync-set,
because it would be trivial to write it as a function instead. In the real world, you’d
indeed write it as a function. It does, of course, serve quite well to illustrate the mecha-
nism of how macros work. Now you know what macros do: they transform or generate
arbitrary s-expressions. We’ll now look at something macros can do that functions can’t.

The unless example

Since the book The C Programming Language came out, almost all programming lan-
guage books have used the “Hello, world!” program as an introductory example.

Macro basics 169

There’s a similar tradition when it comes to explaining macros, and it involves adding
the unless control structure to the language. unless is kind of the opposite of the if
form. Here’s the general if form, as a reminder:

(if test then else)

If the test expression returns true (or a truthy value), the then expression is evalu-
ated. The optional else expression will be evaluated if the test returns false (or a
falsey value). Here’s an example:

(defn exhibits-oddity? [x]

(if (odd? x)
(println "Very odd!")))

The Ruby programming language provides an unless form, which is also a condi-
tional that can be used in similar functions. Clojure doesn’t provide unless, but if it
were there, it might work as follows:

(defn exhibits-oddity? [x]

(unless (even? x)
(println "Very odd, indeed!")))

Obviously, trying this won’t work in Clojure because it will complain that it’s unable to
resolve the symbol unless. Your first attempt at fixing this error will involve writing
a function.

THE UNLESS FUNCTION
Here’s a function that implements unless:

(defn unless [test then]
(if (not test)
then))

After defining unless as shown here, the previous definition of exhibits-oddity?
will work without a problem. It will even work correctly, as is evident if you test it at the
read-evaluate-print loop (REPL) by calling it with an odd number like 11:
(exhibits-oddity? 11)

Very odd, indeed!
;j=> nil

Trouble arises when it’s tested with an even number, such as 10:

(exhibits-oddity? 10)
Very odd, indeed!
;=> nil

It appears that exhibits-oddity? declares all numbers as odd. The reason for this is
that unless is a function, and all functions execute according to the following rules:

1 Evaluate all arguments passed to the function call form.
2 Evaluate the function using the values of the arguments.

170

CHAPTER 7 Evolving Clojure through macros

Rule 1 causes the arguments to be evaluated. In the case of the unless function, those
are the test and then expressions. This happens before execution of the if form even
begins. Because all functions follow these rules, there’s no way that you can use a func-
tion to implement your desired functionality for unless. No matter what you try, the
arguments would be evaluated first.

You could cheat a little by insisting that your callers not pass in raw expressions
such as (println "0dd!") but instead pass them in wrapped-in functions. Consider
the following new definition of the unless function:

(defn unless [test then-thunk]

(if (not test)
(then-thunk)))

Here, then-thunk is a function that’s evaluated only if the test condition isn’t true.
You can rewrite exhibits-oddity? as follows:
(defn exhibits-oddity? [x]

(unless (even? x)
(println "Rather odd!")))

Recall that the # () reader macro characters create an anonymous function. This func-
tion now works as expected:

(exhibits-oddity? 11)

Rather odd!

;j=> nil

(exhibits-oddity? 10)

;=> nil

This solution still isn’t quite satisfactory. It forces callers to wrap the then expression
inside a function. Using the # () reader macro involves just one extra character, but
the language gives no warning if the caller forgets to use it. What you want is some-
thing that works similar to if, which is a special form built into Clojure. Now, you’ll
write a macro to solve this problem.

THE UNLESS MACRO

You know that the if form can be used to write the unless form, as long as you can
avoid the evaluation of the then argument, unless it’s needed. You tried the approach
of delaying evaluation using the function wrapper in the previous section, but you can
do a lot better with a macro. Consider the following definition:

(defmacro unless [test then]
(list 'if (list 'not test)
then))

This generates an s-expression of the form (if (not test) then) when the macro is
expanded. You’'ll rewrite exhibits-oddity? using this macro:
(defn exhibits-oddity? [x]

(unless (even? x)
(println "Very odd, indeed!")))

7.13

Macro basics 171

This works as expected. The unless form is replaced by the new expression gener-
ated by the macro expansion. You can check this at the REPL using the macroexpand
function:

(macroexpand
' (unless (even? x) (println "Very odd, indeed!")))
;=> (if (not (even? x)) (println "Very odd, indeed!"))

Note you quote
argument

Once this expanded form of unless replaces the unless form itself, it’s in turn evalu-
ated to produce the right result. This final definition of unless works as expected, and
the callers don’t need to know that there’s anything special about it. In fact, as far as call-
ers are concerned, unless could have been supplied by the Clojure language itself.

macroexpand, macroexpand-1, and macroexpand-all

macroexpand-1 is a useful function when writing macros, because it can be used to
check if the transformation of s-expressions is working correctly. macroexpand-1
expands an s-expression by evaluating the macro named by the first symbol in the
form. If the first symbol doesn’t name a macro, the form is returned as is.

macroexpand is a function that repeatedly calls macroexpand-1 until the first symbol
of the expanded form is no longer a macro. It can be used to test cases where macros
expand to forms that in turn call macros.

macroexpand-all is a utility function in the clojure.walk namespace. It's like
macroexpand, except it will expand a form recursively until the entire form contains
no macros at all. Often this is too much expansion, but sometimes when debugging
a macro you need to see the fully expanded form to understand what code Clojure
will finally execute.

If it isn’t obvious already, you just added a feature to the Clojure language. That’s neat!
What’s more, such macros are quite common. For instance, Clojure provides when,
when-not, cond, if-not, and so on that are all constructs that allow conditional execu-
tion of code and are all implemented as macros. This is cool; after all, if macros are good
enough to create parts of Clojure itself, then they’re good enough for your programs.

The example in this section showed you the basics of creating a control-flow
macro. But the way you generated s-expressions in the previous unless macro can
become unwieldy quickly. Clojure provides a more convenient way to write macros
that doesn’t involve constructing lists using the 1ist function. This approach involves
generating code via templates.

Macro templates
Consider the unless macro again. Here it is, for convenience:
(defmacro unless [test thenl]

(list 'if (list 'not test)
then))

172

CHAPTER 7 Evolving Clojure through macros

This is a tiny macro, and the s-expression it generates is quite simple. If you wanted to
generate or transform a large, nested s-expression, the repeated calls to 1ist would
become quite tedious. It would also be hard to see the structure of the s-expression
being generated because the repeated occurrence of the symbol 1ist would be in the
way of reading the structure easily. Clojure provides a way out through its backquote
reader macro, which we’ll explore now.

TEMPLATING USING THE BACKQUOTE (~) MACRO

Anyone who has programmed a web application in the last few years knows what a
templating system is. It allows HTML generation from a sort of blueprint. Some parts
are fixed and some are to be filled in when the template is expanded. Examples are
JSP (JavaServer Pages) and RHTML (Rails HTML) pages.

If generating HTML code can be made easier using templates, you can imagine the
same thing would be true for generating Clojure code. This is why the macro system
supports templates through the backquote () reader macro. Here you see it in action
by rewriting the unless macro from before:

(defmacro unless [test then]
“(if (not ~test)
~then))

NOTE When you redefine a macro, you have to reevaluate any functions
that use it. If you don’t, such functions will appear to use the old definition
of the macro. This happens because macro expansion happens only once,
and in the case of such function definitions, the expansions were from the
older definition. Remember to reevaluate your functions when you change
a macro used by any of them.

This new macro definition certainly looks much clearer! The exact form is immedi-
ately obvious, minus a few characters: the backquote and the unquote (~). The back-
quote starts the template. The template will be expanded into an s-expression and will
be returned as the return value of the macro. Clojure calls the backquote the syntax
quote character.

UNQUOTING

Symbols that appear inside the template are used as is when the template is expanded.
In the JSP analogy, these might be fixed text that doesn’t change each time the page is
rendered. Things that do need to change—say, parameters passed to the macro—are
unquoted using the ~ character. Unquoting is the opposite of quoting. Because the
whole template is inside a backquote (a quote), the ~ is used to undo that quotation
so that values can be passed through.

Imagine if you hadn’t unquoted the then parameter in your macro definition:

(defmacro unless [test then]
S (if (not ~test)
then))

Macro basics 173

This would cause the symbol then to appear in the s-expression returned by this macro.
That could cause Clojure to throw an error when the macro is used in a definition,
complaining that it is unable to resolve the then symbol. You can see why this would
happen by examining the output of the macro:

(macroexpand ' (unless (even? x) (println "Very odd, indeed!")))
;j=> (if (clojure.core/not (even? x)) user/then)

Based on this expansion, you can infer that if this macro were used, Clojure would
complain that user/then is an unknown var: Clojure will automatically qualify sym-
bols inside a syntax-quoted form with the namespace in which the form appears (in
this case user). This is why you need to unquote anything that must be replaced with
its value in the template. Next, we’ll look at another form of unquoting.

SPLICING
You’ll now try to use the unless macro to do more than one thing if the test condi-
tion is satisfied. Consider the following new definition of exhibits-oddity?:

(defn exhibits-oddity? [x]
(unless (even? x)
(println "odd!")
(println "Very odd!")))

This won’t work, because unless accepts only two parameters, and you're attempting
to pass it more arguments. You can overcome this using the do form that you learned
about in chapter 2:

(defn exhibits-oddity? [x]
(unless (even? x)
(do
(println "odd!")
(println "Very odd!"))))

This works but is a bother; you have to use the do form everywhere you want more
than one thing in the then part of your unless form. To make things more conve-
nient for the callers of your macro, you can include the do form in the expansion:

(defmacro unless [test & exprs]
S (if (not ~test)
(do ~exprs)))

Now the unless macro accepts multiple expressions that will be executed if the test
condition fails, and they’ll be enclosed inside a do form. You can try it with the latest
exhibits-oddity? function:

(exhibits-oddity? 11)

odd!

Very odd!

NullPointerException user/exhibits-oddity? (NO_SOURCE FILE:4)

174

CHAPTER 7 Evolving Clojure through macros

Hmm, that’s strange. It does print text from both calls but then aborts with an excep-
tion. The previously seen function macroexpand-1 can help you debug this situation:
(macroexpand-1 ' (unless (even? x)

(println "odd!™")

(println "Very odd!")))

;=> (if (clojure.core/not (even? x))
(do ((println "Odd!") (println "Very odd!"))))

There’s an extra pair of parentheses around the expressions you passed into the
unless macro as then. The return value of println is nil, which causes the then
clause to reduce to (nil nil). The extra parentheses cause this expression to be inter-
preted as a function call, throwing the NullPointerException that you saw earlier.

The solution is to eliminate the extra pair of parentheses. But because then is
passed in as the remaining arguments to unless, it’s a list. This is where the unquote
splice reader macro (~@) comes in.

UNQUOTE SPLICE READER MACRO (~@)

Instead of taking a list and unquoting it as is using the unquote (~), the unquote splic-
ing macro splices the contents of the list into the container list. You’ll rewrite the
unless macro using it:

(defmacro unless [test & exprs]
S (if (not ~test)
(do ~@exprs)))

With this definition of unless, the exhibits-oddity? function works just fine. This
use of do that wraps the returned expressions from a macro is quite common, and it’s
a convenience all the callers of your macros will appreciate.

One final aspect of writing macros that we’ll consider before moving on is that of
variable capture.

GENERATING NAMES
In most Lisps, writing macros can get tricky. Well, they can get tricky in Clojure too,
but the language makes things easier than other Lisps. Consider the following (incor-
rect) example:
(defmacro def-logged-fn [fn-name args & bodyl]
" (defn ~fn-name ~args
(let [now (System/currentTimeMillis)]

(println "[" now "] Call to" (str (var ~fn-name)))
~@body)))

The idea behind this macro is to create a function that logs the fact that it was called.
This can be useful for debugging code. Although Clojure allows the macro to be
defined, using it throws an exception:

(def-logged-fn printname [name]

(println "hi" name))
CompilerException java.lang.RuntimeException: Can't let qualified name: user/
now, compiling: (NO SOURCE PATH:1:1)

Macro basics 175

The problem is that the macro attempts to use a namespace-qualified name in the let
binding, which is illegal. You can confirm this using macroexpand-1:

(macroexpand-1 ' (def-logged-fn printname [name]
(println "hi" name)))
;=> (clojure.core/defn printname [name]
(clojure.core/let [user/now (java.lang.System/currentTimeMillis)]
(clojure.core/println "[" user/now ":] Call to"
(clojure.core/str (var printname)))
(println "hi" name)))

The let form can’t use qualified names like user/now, and that’s what Clojure is com-
plaining about. If Clojure didn’t expand now into a namespace-qualified user/now
(where user is the current namespace), then now might shadow another value with
the same name. This situation is illustrated here, where daily-report is a function
that might run a report for a given day (note that this won’t work yet, because the cur-
rent implementation of def-logged-£fn isn’t right yet):

(def-logged-fn daily-report [the-day]

;; code to generate a report here

)

Now, see what happens if you use the function in the following way:

(let [now "2009-10-22"]
(daily-report now))

This doesn’t work as expected, because the value of now that the daily-report func-
tion sees isn’t "2009-10-22" but a number like 1259828075387. This is because the
value set up in the previous let form is captured by the one in the let form gener-
ated by the macro. This behavior is known as variable capture, and it can happen in
most Lisps.

To avoid this, Clojure expands the names into their fully qualified names, causing
the exception you saw earlier. So how do you use the let form to introduce new
names? This is where the reader macro # comes in. It generates unique names that
won’t conflict with others that might be used in the code that’s passed into the macro.
This facility is called auto-gensym, because it automatically generates a symbol that’s
unique enough to be used as a name for things. Here’s the def-logged-fn that uses
this facility:

(defmacro def-logged-fn [fn-name args & bodyl]
“ (defn ~fn-name ~args
(let [now# (System/currentTimeMillis)]

(println "[" now# "] Call to" (str (var ~fn-name)))
~@body)))

It’s that simple. The auto-gensym uses the specified prefix when generating a name.
For example, now# might expand to now 14187 auto . Clojure will replace all
occurrences of each use of now# with the same generated symbol.

176

7.1.4

CHAPTER 7 Evolving Clojure through macros

This new definition of def-logged-£fn will create a function that logs calls to it
correctly. You can redefine the previously defined printname function, and try call-
ing it now:

(printname "deepthi")
[1259955655338] Call to #'user/printname

hi deepthi
;=> nil

Variable capture is a fact of life in all Lisps, and you need to avoid it when it’s unde-
sired. Clojure makes this easier than most Lisps through this auto-gensym facility and
automatic namespace qualification of syntax-quoted symbols. In chapter 11, you’ll see
why you might want the effect of variable capture when we explore anaphoric macros.

We’ve covered a lot of macro basics so far. Before moving on, let’s take a moment
to summarize the reasons to use macros.

Recap: Why macros?

As you saw in the previous section, macros can be more powerful than functions
because they can do things functions can’t: delay (or even choose not to do) the exe-
cution of code, change the normal flow of execution, add syntactic forms, add brand-
new abstractions to the language, or just make things convenient for callers. This
chapter has examples of some of these uses. Macros can also move parts of computa-
tion from runtime to compile time, and you’ll see examples of this in chapter 11.

In this section, we’ll discuss the possibilities offered by a programming language
that features a macro system.

CODE GENERATION

Generating or transforming code is a rather common way of dealing with certain aspects
of writing programs. Most programmers use code generation, even if they aren’t always
cognizant of doing so. The most obvious example is the use of a compiler: it takes
source code and generates some form of executable code, either machine language or
bytecode for a virtual machine. Parts of compilers are themselves often generated from
descriptions of the language grammar. XSLT transforms are often used to convert one
kind of structured XML document to other types of documents.

There are many other examples. API documentation is often created via an auto-
mated process that extracts annotated comments from the source code. Database
access layers often generate all the SQL they need from high-level descriptions of
tables or the model classes themselves. User interface toolkits often have associated
programs that can generate code to create GUI layouts. Web service frameworks can
generate standards-compliant interfaces from descriptions. Web application frame-
works usually include template-based systems that generate HTML code.

Sometimes programs are written to explicitly generate source code files to handle
some kind of pattern in the main application under development. For instance, in a
multitier Java system, you might generate code for JavaBean classes from some other
set of domain classes. Such programs often manipulate strings of text to do their job.

7.2

721

7.2.2

Macros from within Clojure 177

This kind of metaprogramming is primitive, and languages such as Ruby improve
on it by providing language-level facilities to define classes and methods at runtime.
Clojure provides almost an ultimate form of metaprogramming by allowing the pro-
grammer to generate or manipulate code as data.

SYNTAX AND DSLs

We’ve already looked at how you can use macros to add syntactic forms to Clojure.
When combined with bottom-up design and domain-specific abstractions, macros can
transform the solution space into one or more domain-specific languages (DSLs) with
which to code the application. We’ll examine examples of such a design approach in
later chapters of this book.

PLAIN CONVENIENCE

Macros can make life easy for the callers of your functions. Things like the implicit do
form that you saw in the previous section are common additions to macros. In the
next section, you’ll see some examples of macros. This will give you an idea of how
people use them and how you might use them in your own programs.

Macros from within Clojure

In this section, we’ll look at some macros. Many come from the source code of the
Clojure language itself; some are from elsewhere. These examples should give you a
flavor of macro style and ideas about how to use macros in your own code.

Let’s begin our journey with examples of macros from the Clojure language
itself. As mentioned in the previous section, much of Clojure is implemented in Clo-
jure itself, and a lot of that code is macros. This allows the core language to remain
small; Clojure has only about a dozen special forms. This approach allows most
other features of the language to be developed in Clojure itself. We’ll examine a few
macros now.

comment

The comment macro is a great one to start with because it’s so simple. It literally does
nothing; this is an example of ignoring code altogether, as opposed to changing the
flow of execution or delaying it. This macro allows you to comment out parts of your
program or to add comments to your code.

Here’s the complete implementation:

(defmacro comment [& body])

The comment macro returns nil.

declare

Here’s a macro that does a little bit more. The declare macro accepts one or more
symbols to let Clojure know that there may be references to them in the code that fol-
lows. The macro goes through each argument and creates a var with that name. Typi-
cally, these vars are redefined at a later point in the program.

178

7.2.3

7.2.4

CHAPTER 7 Evolving Clojure through macros

A slightly simplified version of how the declare macro is implemented follows:

(defmacro declare [& names]
" (do
~@(map #(list 'def %) names)))

You can see how it works by using the macroexpand function:

(macroexpand ' (declare add multiply subtract divide))
;=> (dO

(def add)

(def multiply)

(def subtract)

(def divide))

The formatting isn’t part of the macro expansion. It’s just a simple way to get rid of
duplication from having to define multiple vars. You couldn’t accomplish this with a
function, by the way, because def is a special form that accepts only a symbol. Inside of
macros, all special forms become available because we’re operating at the s-expression
(or symbolic) level. This is an important advantage of macros.

defonce
We’ll now look at a macro that evaluates conditional expressions. defonce is a macro
that accepts the name of a var and an initialization expression. But if the var has
already been initialized once (has a root binding), it won’t be reinitialized. The imple-
mentation of this macro is straightforward, so we don’t even need to use macro expan-
sion to see what’s going on:
(defmacro defonce [name expr]

“(let [v# (def ~name)]

(when-not (.hasRoot v#)
(def ~name ~expr))))

Notice the unquoting going on here in the last line—it’s what substitutes the name of
the var in the def form, as well as the expression being passed in.

A def isn’t normally evaluated more than once, so you may be wondering why
defonce exists. When using an editor with an integrated REPL, it’s common to reeval-
uate an entire namespace to refresh the REPL environment with updates from the edi-
tor: this means that any defs will be reevaluated, even if they take a long time to
evaluate or contain a stateful resource such as a database connection. defonce is used
to avoid this problem.

and

Let’s now look at a slightly more complex example. In most languages and as well as
other logical operators are implemented as special forms. In other words, they’re built
into the core of the language. In Clojure, and is just another macro:

(defmacro and

([] true)
([x] x)

7.2.5

Macros from within Clojure 179

([x & next]
“(let [and# ~x]
(if and# (and ~@next) and#))))

This is an elegant piece of code! When and is called with no arguments, it returns
true. When it’s called with a single argument, the return value is the argument itself
(remember that anything other than nil or false is treated as true). When there are
multiple arguments, the macro evaluates the first argument. It then tests it with the if
form. If the value is logically true, the macro calls itself with the remaining argu-
ments. The process then repeats. If the evaluation of any argument returns a logical
false, the if form returns that value as is.
You can use macroexpand to see what happens:
(macroexpand ' (and (even? x) (> x 50) (< x 500)))
;=> (let* [and 4357 auto (even? x)]
(if and_4357__ auto_

(clojure.core/and (> x 50) (< x 500))
and 4357 auto_))

You may see something slightly different because the auto-gensym will create differ-
ent names for the local symbols. Also, remember that macroexpand doesn’t expand
macros contained in subexpressions. In reality, the macro will be completely expanded,
and the final expanded s-expression will replace the original call to and.

time

time is a rather handy macro, useful for quick checks on how slow or fast your code is
running. It accepts an expression, executes it, prints the time it took to execute, and
then returns the result of the evaluation. Here’s an example:

(time (* 1331 13531))
"Elapsed time: 0.04 msecs"
;=> 18009761

Using the time macro isn’t as sophisticated as using a profiler, for instance, but it can
be quite useful for quick benchmarks of your code. Here’s how it’s implemented:

(defmacro time [expr]

“(let [start# (. System (nanoTime))
ret# ~expr]
(prn
(str "Elapsed time: "
(/ (double (- (. System (nanoTime)) start#)) 1000000.0)
" msecs"))
ret#))

As you can see, the macro starts a timer before evaluating the expression passed in.
The value of the expression is captured and returned after the timer is stopped and
the duration printed to the console.

These are just a few macros that can be found in Clojure’s source code. As men-
tioned earlier, it’s advantageous for a language to have a small core and have all other

180

7.3

731

7.3.2

CHAPTER 7 Evolving Clojure through macros

features built on top of it using regular code. Clojure does this in an elegant fashion,
and reading through the source code is a great way to learn the tricks of the trade.
You’ll now write some macros of your own.

Writing your own macros

So far, you’ve learned the basic theory of Clojure’s macro system. You've also seen
some macros that form part of the Clojure language. You’ll now write a few of your
own to see how you might use macros in your own programs.

To help you get started, we’ll start with a simple macro called infix. Next, you’ll
write one called randomly, which will appear to add a new control structure to Clo-
jure. Third, you’ll write a macro called defwebmethod, which could be the beginning
of a DSL for writing web applications. Building on the defwebmethod macro, you’ll cre-
ate defnn, a macro that will aid in creating functions that accept named arguments.
And finally, you’ll write the assert-true macro, which could be the beginning of a
unit-testing framework for Clojure.

infix
In chapter 1, we talked about an infix macro, which would allow you to call mathe-
matical operators using infix notation. Here’s how you might implement it:

(defmacro infix [expr]
(let [[left op right] expr]
(l1ist op left right)))

It’s a trivial implementation: it just rearranges the function symbol and the arguments
back into prefix notation. It’s also a fairly naive implementation because it supports
only two terms and doesn’t do any kind of error checking. Still, it’s a fun little macro.

randomly

There are often situations where you want to randomly pick a path of execution. Such
a requirement might arise, for instance, if you wanted to introduce some randomness
into your code. The randomly macro accepts any number of s-expressions and picks
one at random. Here’s the implementation:

(defmacro randomly [& exprs]
(let [len (count exprs)
index (rand-int len)
conditions (map #(list '= index %) (range len))]
“(cond ~@(interleave conditions exprs))))

rand-int is a function that returns a random integer between zero and its argument.
Here you pass the length of the incoming exprs to the rand-int function. Now test it:
(randomly (println "amit") (println "deepthi") (println "adi"))

adi
;=> nil

7.3.3

Writing your own macros 181

Try it one more time:

(randomly (println "amit") (println "deepthi") (println "adi"))
deepthi
;=> nil

And once more:

(randomly (println "amit") (println "deepthi") (println "adi"))
adi
1=> nil

The macro works as expected, evaluating only one of the three expressions. Obviously,
given the randomization, your output will look different. Here’s what the macro trans-
forms the passed-in s-expressions into:
(macroexpand-1
' (randomly (println "amit") (println "deepthi") (println "adi")))
;=> (clojure.core/cond
(= 0 0) (println "amit")
(= 0 1) (println "deepthi")
(= 0 2) (println "adi"))

Again, given the randomization, your expansion may look different. Indeed, if you
expand it several times, you’ll see that the condition clauses in the cond form change.

Incidentally, there’s an easier way to achieve the same effect. Consider the follow-
ing implementation:

(defmacro randomly-2 [& exprs]
(nth exprs (rand-int (count exprs))))

Try it at the REPL to confirm that it works. There’s one unintended consequence of
these macros: each selects an expression when it’s expanded, not later when the code
the macro expands to is run. This means that if the macro is expanded inside another
macro—say, inside a function—it will always return the same random value. To fix this,
you need a new call to rand-int every time the body is evaluated, not just once when
the macro is expanded. Here’s a possible fix:

(defmacro randomly-2 [& exprs]

(let [c (count exprs)]
“(case (rand-int ~c) ~@(interleave (range c) exprs))))

defwebmethod

You’ll now write a macro that has nothing to do with changing the flow of execution
of your code but is a convenience macro that makes life easier for those who use it. It
will also appear to add a feature that’s specific to building web applications to Clojure.

In essence, the web is made dynamic through programs that generate different
HTML documents based on certain input parameters. You can use Clojure functions
for this purpose, where each function might correspond to something the user
requests. For instance, you could write a function that accepts a username and a date

182

CHAPTER 7 Evolving Clojure through macros

and returns a report of that day’s expenses. The parameters of the request might be
bundled in a hash map and given to each function as a request object. Each function
could then query the request object for the parameters it needs, process the request
as required, and then return appropriate HTML.

Here’s what such a function might look like:

(defn login-user [request]
(let [username (:username request)
password (:password request)]
(if (check-credentials username password)
(str "Welcome back, " username ", " password " i1s correct!")
(str "Login failed!"))))

Here, check-credentials might be a function that would look up authentication
information from a database. For your purposes, let’s define it as follows:

(defn check-credentials [username password]
true)

Also, login-user would return real HTML as opposed to the strings you're returning.
It should give a general idea about the structure of such functions, though. Now try it:

(def request {:username "amit" :password "123456"})
;=> #'user/request

(login-user request)

;=> "Welcome back, amit, 123456 is correct!"

The trouble with this is that every function like login-user must manually query val-
ues out of the request map. The example here needs two parameters—username and
password—but you can certainly imagine functions that need many more. It would be
quite tedious to have to pull them out from the request map each time. Consider the
following macro:

(defmacro defwebmethod [name args & exprs]
“(defn ~name [{:keys ~args}]
~@exprs))

You can now use this macro to define a new version of login-user as follows:

(defwebmethod login-user [username password]
(if (check-credentials username password)
(str "Welcome, " username ", " password " is still correct!")
(str "Login failed!")))

You can try this version of the function on the REPL:

(login-user request)
;=> "Welcome, amit, 123456 is still correct!"

For programmers who don’t know the internals of defwebmethod, it appears that it’s
literally a new language abstraction, designed specifically for web applications. Any

7.34

Writing your own macros 183

names specified in the parameters list are automatically pulled out of the request
map and set up with the correct value (the function defined still takes the same argu-
ment). You can specify the names of the function parameters in any order, which is a
nice convenience.

You can imagine other domain-specific additions to Clojure written this way.

defnn

You used map destructuring in the previous example to create a function that broke
apart an incoming map into constituent, named parts. Now, you're going to let named
arguments be passed into a function in any order, for instance:

(defnn print-details [name salary start-date]
(println "Name:" name)
(println "Salary:" salary)
(println "Started on:" start-date))

;=> #'user/print-details

And in using it, you’d be able to do something like this:

(print-details :start-date "10/22/2009" :name "Rob" :salary 1000000)
Name: Rob

Salary: 1000000

Started on: 10/22/2009

Notice how you can change the order of the arguments because they're named using
keywords. If you didn’t pass some of those arguments in, they’d default to nil. Here’s
the implementation:

(defmacro defnn [fname [& names] & bodyl
(let [ks {:keys (vec names) }]
“(defn ~fname [& {:as arg-map#}]
(let [~ks arg-map#]
~@body))))

How does it work? You can check using macroexpand:

(def print-details
(clojure.core/fn
([& {:as arg-map_ 2045 auto }]
(clojure.core/let [{:keys [name salary start-datel}
arg-map 2045 auto]
(println "Name:" name)
(println "Salary:" salary)
(println "Started on:" start-date)))))

Again, you’re using map destructuring in a let form to tease apart named arguments
and to set up names for the specified values. The let form also converts the pairs of
keywords and values into a hash map. This is a limited form of named arguments, and
it certainly doesn’t do any error checks or allow for default values. Still, it can be built
upon to add those features.

184

7.3.5

CHAPTER 7 Evolving Clojure through macros

assert-true

For the last example, you’ll write a macro that you can use to assert that an s-expression
evaluates to true. Let’s see how you might use it:

(assert-true (= (* 2 4) (/ 16 2)))
;=> true
(assert-true (< (* 2 4) (/ 18 2)))
;j=> true

You might use assert-true in a set of unit tests. You might be tempted to have multi-
ple such assertions in a single unit test, all verifying related functionality. The trouble
with having several assertions in one unit test is that when something fails, it isn’t
immediately obvious what failed. Line numbers are useful, as are custom error mes-
sages that some unit-testing frameworks allow.

In your little macro, you'd like to see the code that failed. It might work as follows:

(assert-true (>= (* 2 4) (/ 18 2)))
;=> RuntimeException (* 2 4) is not >= 9

Using literal code like this is a natural fit for macros. Here’s the macro:

(defmacro assert-true [test-expr]
(let [[operator lhs rhs] test-expr]
“(let [rhsv# ~rhs ret# ~test-expr]
(1f-not ret#
(throw (RuntimeException.
(str '~lhs " is not " '~operator " " rhsv#)))
true))))

It’s a straightforward implementation. A binding form is used to tease apart test-
expr into its constituent operator, lhs, and rhs parts. The generated code then uses
these to do their thing, best understood by looking at a sample macro expansion:

(macroexpand-1 ' (assert-true (>= (* 2 4) (/ 18 2))))
;i=> (clojure.core/let [rhsv 11966 auto (/ 18 2)
ret_ 11967__auto (>= (* 2 4) (/ 18 2))]
(clojure.core/if-not ret 11967 auto
(throw (java.lang.RuntimeException.
(clojure.core/str (quote (* 2 4))
" is not " (quote >=) " " rhsv 11966 _auto_)))
true))

As mentioned earlier, this macro is actually quite simple. Notice how '~1lhs, for
instance, expands to (quote (* 2 4)). This is desirable, because by quoting it, you’re
able to stop the form from being evaluated and replaced with its result. This makes it
more useful when a failure occurs, because it’s the actual code that the user passed
into the assertion. Imagine how hard doing something like this would be in a lan-
guage such as Java, C++, or even Ruby or Python.

74

Summary 185

You can improve it by adding some semantic error checking to handle situations
where invalid expressions are passed. Consider the following definition:

(defmacro assert-true [test-expr]
(if-not (= 3 (count test-expr))
(throw (RuntimeException.
"Argument must be of the form
(operator test-expr expected-expr)")))

(if-not (some #{ (first test-expr)} '(< > <= >= = not=))
(throw (RuntimeException.
"operator must be one of < > <= >= = not=")))

(let [[operator lhs rhs] test-expr]
“(let [rhsv# ~rhs ret# ~test-expr]
(if-not ret#
(throw (RuntimeException.
(str '~lhs " is not " '~operator " " rhsv#)))
true))))

This works for the two situations where someone passes a malformed expression into
the macro:
(assert-true (>= (* 2 4) (/ 18 2) (+ 2 5)))

;=> RuntimeException Argument must be of the form
(operator test-expr expected-expr)

It also checks for the case where someone tries to use an operator that isn’t supported:

(assert-true (<> (* 2 4) (/ 16 2)))
;=> RuntimeException operator must be one of < > <= >= = not=

This example shows how macros can make it easy to perform domain-specific semantic
checking of not just values but of the code itself. In other languages, this might have
required some serious parsing. Clojure’s code-as-data approach pays off in this scenario.

Summary

We said in the beginning of this chapter that macros distinguish Clojure (and other
Lisps) from most other programming languages. Macros allow the programmer to
add new language features to Clojure. Indeed, you can build whole new layers of func-
tionality on top of Clojure, which make it appear that an entire new language has
been created. An example of this is Clojure’s concurrency system: it isn’t part of the
language per se; it’s implemented as a set of Java classes and associated Clojure func-
tions and macros.

Macros truly blur the distinction between the language designer and the applica-
tion programmer, allowing you to add to the language as you see fit. For instance,
should you feel that Clojure lacks a construct that would allow you to express some-
thing, you don’t have to wait for the next version of the language or wish you were
using a different language. You can add that feature yourself. You’ll see an example of
this in the next chapter, where we’ll show you how you can build an object system in
Clojure using macros and higher-order functions.

More on functional
programning

This chapter covers

m A refresher on higher-order functions
m Partial application of functions
m |exical closures

m Traditional object-oriented programming (OOP)
in Clojure

So far you’ve seen a lot of the Clojure programming language, and you’ve used it to
write a good number of functions. Because it’s a functional programming lan-
guage, understanding and mastering the functional programming paradigm is key
to being successful with it. In this chapter, we’ll explore this topic some more.

Instead of approaching this from, say, a mathematical (or plain theoretical)
standpoint, we’ll review code to explore some of the main ideas. We’ll start by
implementing a few common higher-order functions that you often see used in
functional programs. The idea is to help you become comfortable with recursion,
lazy sequences, functional abstraction, and function reuse.

Next, we’ll visit the land of partial application. This exposure will give you fur-
ther insight into functional programming and what you can do with it. Although

186

8.1

811

Using higher-order functions 187

partial application doesn’t find particularly widespread use in Clojure, sometimes it’s
the perfect fit for the job. Incidentally, you’ll also see the alternatives to partial appli-
cation later in the chapter.

The final stop will be to explore closures. The last section puts everything together
to write a little object system that illustrates the ideas of OOP vis-a-vis functional pro-
gramming. You may wonder why there’s a section on OOP in a chapter on functional
programming. Once you read through to the end of this chapter, you’ll realize how
functional programming can be thought of as a superset of OOP—and in fact tran-
scends it.

Using higher-order functions

We talked about higher-order functions in chapter 3. A higher-order function is one
that either accepts another function or returns a function. Higher-order functions
allow the programmer to abstract out patterns of computation that would otherwise
result in duplicated code. In this section, we’ll look at a few examples of higher-
order functions that can greatly simplify many things you’ll come across. You've
seen several of these functions before, in other forms, and we’ll point these out as
you implement them.

Overall, this section will give you a sense of how higher-order functions can be
used to implement a variety of solutions in Clojure; indeed, how it’s an integral part of
doing so.

Collecting results of functions

Let’s begin our look at higher-order functions by considering the idea of a function
named square-all that accepts a list of numbers and returns a list of the squares of
each element. You may need such a sequence in a graphics program or in some other
math computation:

(defn square [x]
(* x x))

(defn square-all [numbers] |m°ﬁmﬁc
(if (empty? numbers) equwale.nt to
nil empty list

(cons (square (first numbers))
(square-all (rest numbers)))))

A quick note about returning nil in the empty case: you could also return an empty
list, but in Clojure it’s idiomatic to return nil instead because it’s falsey (unlike an
empty list, which is truthy) and all segrelated functions treat nil like an empty list
anyway (for example, conj-ing onto nil returns a list).

Notice that the cons function is used to build a new sequence. It accepts a single
element, and another sequence, and returns a new one with that element inserted in
the first position. Here, the first element is the square of the first number, and the

188

CHAPTER 8 More on functional programming

body is the sequence of the squares of the remaining numbers. This works as expected,
and you can test this at the read-evaluate-print loop (REPL) as follows:

(square-all [1 2 3 4 5 6])
;j=> (1 4 9 16 25 36)

Now let’s look at another function, cube-all, which also accepts a list of numbers but
returns a list of cubes of each element:

(defn cube [x]
(* x x x))
(defn cube-all [numbers]
(if (empty? numbers)
()
(cons (cube (first numbers))
(cube-all (rest numbers)))))

Again, this is easy to test:

(cube-all [1 2 3 4 5 6])
;=> (1 8 27 64 125 216)

They both work as expected. The trouble is that there’s a significant amount of
duplication in the definitions of square-all and cube-all. You can easily see this
commonality by considering the fact that both functions are applying a function to
each input element and are collecting the results before returning the list of col-
lected values.

You’ve already seen that such functions can be captured as higher-order functions
in languages such as Clojure:

(defn do-to-all [f numbers]
(if (empty? numbers)
()
(cons (f (first numbers))
(do-to-all £ (rest numbers)))))

With this, you can perform the same operations easily:

(do-to-all square [1 2 3 4 5 6])
;=> (1 4 9 16 25 36)

(do-to-all cube [1 2 3 4 5 6])
;=> (1 8 27 64 125 216)

You can imagine that the do-to-all implementation is similar to that of the map func-
tion that’s included in Clojure’s core library. You've seen this function earlier in the
book. The map function is an abstraction that allows you to apply any function across
sequences of arguments and collect results into another sequence. This implementa-
tion is quite limited when compared with the core map function, and it also suffers

8.1.2

Using higher-order functions 189

from a rather fatal flaw: it will blow the call stack if a long enough list of elements is
passed in. Here’s what it will look like:

(do-to-all square (range 11000))
StackOverflowError clojure.lang.Numbers$LongOps.multiply (Numbers.java:459)

This is because every item results in another recursive call to do-to-all, thus adding
another stack frame until you eventually run out. Consider the following revised
implementation:

(defn do-to-all [f numbers]
(lazy-seq
(if (empty? numbers)
()
(cons (f (first numbers))
(do-to-all £ (rest numbers))))))

Now, because this return is a lazy sequence, it no longer attempts to recursively com-
pute all the elements to return. The lazy-seq macro takes a body of code that returns
a sequence (or nil) and returns an object that’s “seqable”—that is, it behaves like a
sequence. But it invokes the body only once and on demand (lazily) and returns
cached results thereafter. The function now works as expected:

(take 10 (drop 10000 (do-to-all square (range 11000))))

;=> (100000000 100020001 100040004 100060009 100080016 100100025 100120036
100140049 100160064 100180081)

This is similar to the map function that comes with Clojure (although the Clojure ver-
sion does a lot more). Here’s what that might look like:

(take 10 (drop 10000 (do-to-all square (range 11000))))
;=> (100000000 100020001 100040004 100060009 100080016 100100025 100120036
100140049 100160064 100180081)

Notice all that was done here was to replace do-to-all with map. The map function is
an extremely useful higher-order function, and as you’ve seen over the last few chap-
ters, it sees heavy use.

Let’s now look at another important operation, which can be implemented using a
different higher-order function.

Reducing lists of things

It’s often useful to take a list of things and compute a value based on all of them. An
example might be totaling a list of numbers or finding the largest number. You’ll
implement the total first:

(defn total-of [numbers]
(loop [nums numbers sum 0]
(if (empty? nums)
sum
(recur (rest nums) (+ sum (first nums))))))

190

CHAPTER 8 More on functional programming

This works as expected, as you can see in the following test at the REPL:

(total-of [5 7 9 3 4 1 2 8])
;=> 39

Now you’ll write a function to return the greatest from a list of numbers. First, write a
simple function that returns the greater of two numbers:

(defn larger-of [x y]
(if (> xvy) xvy))

This is a simple enough function, but now you can use it to search for the largest num-
ber in a series of numbers:

(defn largest-of [numbers]
(loop [1 numbers candidate (first numbers)]
(if (empty? 1)
candidate
(recur (rest 1) (larger-of candidate (first 1))))))

You need to see if this works:

(largest-of [5 7 9 3 4 1 2 8])
i=> 9

(largest-of [])

1=> nil

It’s working, but there’s clearly some duplication in total-of and largest-of. Specif-
ically, the only difference between them is that one adds an element to an accumula-
tor, whereas the other compares an element with a candidate for the result. Next,
you’ll extract the commonality into a function:

(defn compute-across [func elements value]
(if (empty? elements)
value
(recur func (rest elements) (func value (first elements)))))

Now you can easily use compute-across to implement total-of and largest-of:

(defn total-of [numbers]
(compute-across + numbers 0)
(defn largest-of [numbers]
(compute-across larger-of numbers (first numbers)))

To ensure that things still work as expected, you can test these two functions at the
REPL again:

(total-of [5 7 9 3 4 1 2 8])
i=> 39

(largest-of [5 7 9 3 4 1 2 8])
;=> 9

8.1.3

Using higher-order functions 191

compute-across is generic enough that it can operate on any sequence. For instance,
here’s a function that collects all numbers greater than some specified threshold:

(defn all-greater-than [threshold numbers]
(compute-across #(if (> %2 threshold) (conj %1 %2) %1) numbers []))

Before getting into how this works, you need to check if it works:

(all-greater-than 5 [5 7 9 3 4 1 2 8])
;=> [7 9 8]

It works as expected. The implementation is simple: you’ve already seen how compute-
across works. The initial value (which behaves as an accumulator) is an empty vector.
You need to conjoin numbers to this when it’s greater than the threshold. The anony-
mous function does this.

The compute-across function is similar to something you’ve already seen: the
reduce function that’s part of Clojure’s core functions. Here’s all-greater-than
rewritten using the built-in reduce:

(defn all-greater-than [threshold numbers]
(reduce #(if (> %2 threshold) (conj %1 %2) %1) [] numbers))

And here it is in action:

(all-greater-than 5 [5 7 9 3 4 1 2 8])
1=> [7 9 8]

Both the compute-across and reduce functions allow you to process sequences of
data and compute a final result. Let’s now look at another related example of using
compute-across.

Filtering lists of things

You wrote a function in the previous section that allows you to collect all numbers
greater than a particular threshold. Now you’ll write another one that collects those
numbers that are less than a threshold:

(defn all-lesser-than [threshold numbers]
(compute-across #(if (< %2 threshold) (conj %1 %2) %1) numbers []))

Here’s the new function in action:

(all-lesser-than 5 [5 7 9 3 4 1 2 8])
;=> [3 4 1 2]

Notice how easy it is, now that you have your convenient little compute-across func-
tion (or the equivalent reduce). Also, notice that there’s duplication in the all-
greater-than and all-lesser-than functions. The only difference between them is
in the criteria used in selecting which elements should be returned.

192

8.2

CHAPTER 8 More on functional programming

Now you need to extract the common part into a higher-order select-if function:

(defn select-if [pred elements]
(compute-across #(if (pred %2) (conj %1 %2) %1) elements []))

You can now use this to select all sorts of elements from a larger sequence. For
instance, here’s an example of selecting all odd numbers from a vector:

(select-1if odd? [5 7 9 3 4 1 2 8])
;=> [5 7 9 3 11

To reimplement the previously defined all-lesser-than function, you could write it
in the following manner:

(defn all-lesser-than [threshold numbers]
(select-1if #(< % threshold) numbers))

This implementation is far more readable, because it expresses the intent with sim-
plicity and clarity. The select-if function is another useful, low-level function that
you can use with any sequence. In fact, Clojure comes with such a function, one
that you’ve seen before: filter. Here, for instance, is the same selection of odd
numbers you just saw:

(filter odd? [5 7 9 3 4 1 2 8])
i=> (57 9 3 1)

Note that although filter returns a lazy sequence here, and the select-1if func-
tion returned a vector, as long as your program expects a sequence, either function
will work.

Over the last few pages, you've created the functions do-to-all, compute-across,
and select-1if, which implement the essence of the built-in map, reduce, and filter
functions. The reason for this was two-fold: to demonstrate common use cases of
higher-order functions and to show that the basic form of these functions is rather
simple to implement. The select-if isn’t lazy, for instance, but with all the knowl-
edge you’ve gained so far, you can implement one that is. With this background in
place, let’s explore a few other topics of interest of functional programs.

Partial application

In the last section you wrote several higher-order functions that accepted a function as
one argument and applied it to other arguments. Now we’re going to look at another
kind of higher-order function—those that create and return new functions. This is a
crucial aspect of functional programming, and in this section you’ll write functions
that return new functions of less arity than the ones they accept as an argument.
You’ll do this by “partially applying” the function. (Don’t worry; the meaning of this
will become clear shortly.)

821

Partial application 193

Adapting functions

Let’s imagine that you have a function that accepts a tax percentage (such as 8.0 or
9.75) and a retail price and returns the total price with tax using a threading macro:

(defn price-with-tax [tax-rate amount]
(->> (/ tax-rate 100)
(+ 1)
(* amount)))

Now you can find out what something truly costs, because you can calculate its price
including the sales tax, as follows:

(price-with-tax 9.5M 100)
;=> 109.500M

Notice that you use the BigDecimal type for money (specified by the M suffix): using
floating-point numbers for financial applications is asking for rounding errors! If you
had a list of prices that you wanted to convert into a list of tax-inclusive prices, you
could write the following function:

(defn with-california-taxes [prices]
(map # (price-with-tax 9.25M %) prices))

And you could then batch-calculate pricing with taxes:

(def prices [100 200 300 400 500])

;=> #'user/prices

(with-california-taxes prices)

;j=> (109.2500M 218.5000M 327.7500M 437.0000M 546.2500M)

Notice that in the definition of with-california-taxes, there’s an anonymous func-
tion that accepted a single argument (a price) and applied price-with-tax to 9.25
and the price. Creating this anonymous function is convenient; otherwise, you might
have had to define a separate function that you may never have used anywhere else,
such as this:

(defn price-with-ca-tax [pricel
(price-with-tax 9.25M price))

And if you had to handle New York, it would look like this:

(defn price-with-ny-tax [pricel
(price-with-tax 8.0M price))

If you had to handle any more, the duplication would certainly get to you. Luckily, a
functional language such as Clojure can make short work of it:

(defn price-calculator-for-tax [state-tax]
(fn [price]
(price-with-tax state-tax price)))

194

CHAPTER 8 More on functional programming

This function accepts a tax rate, presumably for a given state, and then returns a
new function that accepts a single argument. When this new function is called with a
price, it returns the result of applying price-with-tax to the originally supplied tax
rate and the price. In this manner, the newly defined (and returned) function
behaves like a closure around the supplied tax rate. Now that you have this higher-
level function, you can remove the duplication you saw earlier by defining state-
specific functions as follows:

(def price-with-ca-tax (price-calculator-for-tax 9.25M))
(def price-with-ny-tax (price-calculator-for-tax 8.0M))

Figure 8.1 shows how this works.

Function generator

Figure 8.1 The tax-rate
initially passed into the
price-calculator-for-
tax function is captured by
the resulting function (such as
price-with-ca-tax). It's
Price then able to use that value

| With when it’s called with a price,
to return the correct price with
the tax applied to it.

Price with sales tax calculator

Notice again that you're creating new vars (and that you're directly using def here, not
defn) that are bound to the anonymous functions returned by the price-calculator-
for-tax function.

These new functions accept a single argument and are perfect for functions such
as with-california-taxes that accept a list of prices, and call map across them. A
single-argument function serves well in such a case, and you can use any of the previ-
ous functions for this purpose. This is a simple case where you started out with a func-
tion of a certain arity (in this case, price-with-tax accepts two arguments), and you
needed a new function that accepted a lesser number of arguments (in this case, a
single-argument function that could map across a sequence of prices).

This approach of taking a function of n arguments and creating a new function of &
arguments (where n > k) is a form of adaptation (you may be familiar with the adapter
pattern from OOP literature). You don’t need special ceremony to do this in functional
languages, thanks to first-class functions. Let’s see how Clojure makes this easy.

Partial application 195

PARTIAL APPLICATION
Let’s say you have a function of n arguments and you need to fix (n - k) arguments to
create a new function of k arguments. Here’s a function to illustrate this:

(defn of-n-args [a b ¢ d el
(str abcde))

Now, to fix, say, the first three arguments to 1, 2, and 3, you could do the following:

(defn of-k-args [d el
(of-n-args 1 2 3 d e))

You need to ensure that this function works as expected:

(of-k-args \a \b)
;j=> "123ab"

OkXkay, so that works. If you needed to create a function that fixed, say, two or four argu-
ments, you’d have to write similar code again. As you can imagine, if you had to do
this a lot, it would get rather repetitive and tedious.

You could improve things by writing a function that generalizes the idea, such as
(defn partially-applied [of-n-args & n-minus-k-args]

(fn [& k-args]
(apply of-n-args (concat n-minus-k-args k-args))))

Now, you could create any number of functions that fixed a particular set of argu-
ments of a particular function, for example:

(def of-2-args (partially-applied of-n-args \a \b \c))

;=> #'user/of-2-args

(def of-3-args (partially-applied of-n-args \a \b))
;=> #'user/of-3-args

And you can see if these work as expected:

(of-2-args 4 5)

;=> "abc45"
(of-3-args 3 4 5)
;=> "ab345"

The new function is called partially-applied because it returns a function that’s a par-

tially applied version of the function you passed into it. For example, of-3-args is a

partially applied version of of-n-args. This is such a common technique in functional

programming that Clojure comes with a function that does this, and it’s called partial.
It’s used the same way:

(def of-2-args (partial of-n-args \a \b \c))
;=> #'user/of-2-args

(def of-3-args (partial of-n-args \a \b))
;=> #'user/of-3-args

196

822

CHAPTER 8 More on functional programming

And here it is in action:

(of-2-args 4 5)

;j=> "abc45"
(of-3-args 3 4 5)
;=> "ab345"

You now understand what it means to partially apply a function. Partial application is
an abstraction that comes out of having higher-order functions. Although the exam-
ples showed this technique where you needed to adapt a function of a given arity to a
function of a lower arity, there are other uses as well. You’ll see one such use in the
next section.

Defining functions

In this section, we’ll use the technique of partial application to define new functions.
Recall the select-1if function from the previous section:

(defn select-if [pred elements]
(compute-across #(if (pred %2) (conj %1 %2) %1) elements []))

Note that the compute-across function is passed an empty vector as the last argu-
ment. Here, you’ll write a modified version of select-if called select-into-if,
which will accept an initial container:

(defn select-into-if [container pred elements]
(compute-across #(if (pred %2) (conj %1 %2) %1) elements container))

Again, as you saw in the previous section, if you had a list of numbers such as

(def numbers [4 9 5 7 6 3 8])

then you could use the new function as follows:

(select-into-if [] #(< % 7) numbers)
;j=> [4 5 6 3]

Similarly, you could also pass in an empty list instead of an empty vector, as shown
here:

(select-into-if () #(< % 7) numbers)
;=> (3 6 5 4)

Note that depending on whether you want to filter results up or down (in the same
order as the elements appear or in the reverse), you can use either the empty vector as
your container or the empty list. This ordering may be useful when you have a situa-
tion where the order matters, and you either want to preserve it or perhaps reverse it.
Now you’ll further abstract this idea of filtering results up or down as follows:

(def select-up (partial select-into-if []))

8.3

831

Closures 197

This is a new function using partial. You fixed the first argument of the select-
into-if function to the empty vector. Similarly, you could define the concept of
selecting down a sequence of elements as follows:

(def select-down (partial select-into-if ()))

It’s time to test these two functions to ensure that they work:

(select-up #(< % 9) [5 3 9 6 8])
;i=> [5 3 6 8]

(select-down #(< % 9) [5 3 9 6 8])
;=> (8 6 3 5)

Obviously, there are specific implications that arise from using a vector versus a list,
and depending on the situation, these may be a convenient way to filter elements of
a sequence.

As you’ve seen, partial application of functions can be a useful tool. This section
showed two situations where this technique might come in handy. The first is to adapt
functions to a suitable arity by fixing one or more arguments of a given function. The
second is to define functions by partially applying a more general function to get spe-
cific functions that have one or more arguments fixed.

There’s a more general principle at work here, a principle that makes partial func-
tion application possible: lexical closures.

Closures

In this section, we’re going to explore the lexical closure, which is a central concept of
functional programming. How central it is can be seen from the fact that the name
Clojure itself is a play on the term closure. We’ll begin by reviewing what closures are
and what they close over. Then we’ll look at a couple of closure use cases in functional
programming. Specifically, we’ll look at how closures can be used to delay computa-
tion and how they can be used as objects (in the OO sense of the word). At the end,
we’ll create a little OO layer for Clojure to demonstrate that Clojure (and Lisps in gen-
eral) go beyond traditional ideas of OOP.

Free variables and closures

Before we jump into what closures are, let’s look at the concept of free variables. A
free variable is one that’s neither an argument nor a local variable. For instance, take
alook at adder in this code:

(defn adder [numl num2]
(let [x (+ numl num2)]
(fn [yl
(+ x vy))))

x is a free variable: its value
will come from outside scope
of function that uses it.

Here, numl and num2 are arguments of the adder function and so they aren’t free vari-
ables. The let form creates a lexically scoped block of code, and within that block,

198

8.3.2

CHAPTER 8 More on functional programming

numl and num2 are free variables. Further, the let form creates a locally named value
called x. Therefore, within the let block, x isn’t a free variable. Finally, an anonymous
function is created that accepts an argument called y. Within this anonymous func-
tion, y isn’t a free variable, but x is (because it’s neither an argument nor a local vari-
able within the function block).

Now that you understand what a free variable is, let’s examine this function a little
more. Consider the following code:

(def add-5 (adder 2 3))
;=> #'user/add-5

add-5 is a var that’s bound to the return value of the call to adder, which is the anony-
mous function returned by the adder function. The function object contains within it
a reference to x, which exists for only as long as the let block inside adder lives. Con-
sider that the following works as expected:

(add-5 10)
;=> 15

Given the fact that the life of a locally named value such as x lasts only until the enclos-
ing lexical block lasts, how can add-5 do its work? You might imagine that the x refer-
enced inside add-5 ceased to be the moment add-5 was created.

The reason this works, though, is that the anonymous function returned by adder
is a closure, in this case closing over the free variable x. The extent (life) of such
closed-over free variables is that of the closure itself. This is why add-5 is able to use
the value of x, and it adds 10 to 5 to return 15 in the example.

In summary, a free variable will have the value that variable has in its enclosing
scope at the moment that its own scope is created. Now let’s look at what closures can
do for your Clojure programs.

Delayed computation and closures

One aspect of closures is that they can be executed at any time, any number of
times, or not at all. This property of delayed execution can be useful. Consider the
following code:

(let [x 1
y 0]
(/ xvy))
ArithmeticException Divide by zero clojure.lang.Numbers.divide
(Numbers.java:156)

You know what this code will do: it will promptly throw a nice divide-by-zero excep-
tion. Let’s wrap the code with a try-catch block so as to control the situation
programmatically:

8.3.3

Closures 199

(let [x 1
y 0]
(try
(/ xy)
(catch Exception e (println (.getMessage e)))))
Divide by zero
;=> nil

This pattern is common enough that you might want to extract it out into a higher-
order control structure:

(defn try-catch [the-try the-catch]
(try
(the-try)
(catch Exception e (the-catch e))))

Now that you have this, you could write

(let [x 1
y 0]
(try-catch #(/ x y)
(println (.getMessage %))))

Notice here that you’re passing in an anonymous function that closes around x and y.
You could have written a macro to do this same thing, but this shows that you don’t
need macros for something like this, even though the macro solution would be nicer
(syntactically more convenient to use, resulting in code that’s easier to read).

When we compared macros to functions, we noted that Clojure evaluates function
arguments in an eager manner. This behavior is one of the reasons why macros have
an advantage, in that macros don’t evaluate arguments, allowing us as programmers
to be in control. Here, the try-catch function achieves the same intended effect by
accepting functions that will be evaluated later. To be specific, although your anony-
mous functions are created immediately (when you passed them in as arguments),
they’re only evaluated later (within the try-catch block). Further, because the free
variables x and y were enclosed within a closure correctly, the try-catch function was
able to work correctly.

You can imagine creating other control structures in a similar manner. In the next
section, you’ll see another interesting aspect of closures.

Closures and objects

In this section, we’re going to examine another benefit of the closure. As you've seen
over the past few paragraphs, a closure captures the bindings of any free variables visi-
ble at the point of creation. These bindings are then hidden from view to the rest of
the world, making the closure a candidate for private data. (Data hiding is somewhat
of an overrated concept, especially in a language such as Clojure. You’ll see more on
this in the next section.)

200 CHAPTER 8 More on functional programming

For the moment, let’s continue exploring the captured bindings inside closures.
Imagine that you needed to handle users’ login information and email addresses in
your application. Consider the following function:

(defn new-user [login password emaill
(fn [al
(case a
:login login
:password password
:email email
nil)))

There’s nothing particularly new here; you saw such code in the previous section.
Here it is in action:

(def arjun (new-user "arjun" "secret" "arjun@zololabs.com"))
;=> #'user/arjun

(arjun :login)

;=> "arjun"

(arjun :password)

;=> "secret"

(arjun :email)

;=> "arjun@zololabs.com"

(arjun :name)

;=> nil

First, a new function object is created by calling the new-user function with "arjun",
"secret", and "arjune@currylogic.com" as arguments. Then, you were able to query
it for the login, password, and email address. arjun appears to behave something like
a map, or at least a data object of some kind. You can query the internal state of the
object using the keywords :1login, :password, and :email, as shown previously.

It’s also worth noting that this is the only way to access the internals of arjun. This
is a form of message passing: the keywords are messages that you're sending to a
receiver object, which in this case is the function object arjun. You can implement
fewer of these should you choose to. For instance, you might deem the password to be
a hidden detail. The modified function might look as follows:

(defn new-user [login password emaill]
(fn [al
(case a

:login login .
cemail email QJ Inner function can
:password-hash (hash password) access password.
nil)))

;=> #'user/new-user

(def arjun (new-user "arjun" "secret" "arjune@zololabs.com"))

;=> #'user/arjun

(arjun :password)

;=> nil

(arjun :password-hash) Enables information hiding; can use password
7=> 1614358358 without letting anyone else see it

Doesn’t ever return
password to callers

Closures 201

Although the new-user function and the returned inner function can see password,
anyone using the returned inner function can only see the hash of the password.
Using a closure, you were able to hide information from callers of a function that’s
still visible to the function itself. Having come this far, we’ll take a short break to com-
pare functions such as arjun with objects from other languages.

DATA OR FUNCTION?

Already the line between what’s clearly a function and what might be construed to
be data in languages such as Java and Ruby should have started to blur. Is arjun a
function or is it a kind of data object? It certainly behaves similarly to a hash map,
where you can query the value associated with a particular key. In this case, you
wrote code to expose only those keys that you considered public information, while
hiding the private pieces. Because arjun is a closure, the free variables (the argu-
ments passed to new-user) are captured inside it and hang around until the closure
itself is alive. Technically, although arjun is a function, semantically it looks and
behaves like data.

Although data objects such as hash maps are fairly static (in that they do little more
than hold information), traditional objects also have behavior associated with them.
Let’s blur the line some more by adding behavior to your user objects. Here you’ll add
a way to see if a given password is the correct one. Consider this code:

(defn new-user [login password emaill
(fn [a & args]
(case a
:login login
:email email
:authenticate (= password (first args)))))

Now try it out:

(def adi (new-user "adi" "secret" "adie@currylogic.com"))
;=> #'user/adi

(adi :authenticate "blah")

;=> false

(adi :authenticate "secret")

;j=> true

Your little closure-based users can now authenticate themselves when asked to do so.
As mentioned earlier, this form of message passing resembles calling methods on
objects in languages such as Java and Ruby. The format for doing so could be written
like so:

(object message-name & arguments)

Objects in OOP are usually defined as entities that have state, behavior, and equality.
Most languages also allow them to be defined in a manner that allows inheritance of
functionality. So far, we’ve handled state (information such as login, password, and

202

8.3.4

CHAPTER 8 More on functional programming

email) and behavior (such as :authenticate). Equality depends on the domain of
use of these objects, but you could conceivably create a generic form of equality
testing based on, say, a hash function. In the next section, we’ll consolidate the ideas
we talked about in this section and add inheritance and a nicer syntax to define
such objects.

An object system for Clojure

In the previous section, you created a function named new-user that behaves as a sort
of factory for new user objects. You could call new-user using the data elements thata
user comprises (login, password, and email address), and you’d get a new user
object. You could then query it for certain data or have it perform certain behaviors.
You made this possible by implementing a simple message passing scheme, with mes-
sages such as :login and :authenticate.

In this section, we’ll generalize the idea of creating objects that have certain data
and behavior into what traditional OO languages call classes. First, you’ll allow a sim-
ple class hierarchy, and you’ll let objects refer to themselves by providing a special
symbol, traditionally named this. Finally, you’ll wrap this functionality in a syntactic
skin to make it appear more familiar.

DEFINING CLASSES

We’ll start simple. You’ll create the ability to define classes that have no state or behav-
ior. You’ll lay the foundations of your object system starting with the ability to define a
class that’s empty. For instance, you’d like to be able to say

(defclass Person)

This would define a class that would behave as a blueprint for future instances of peo-
ple. You could then ask for the name of such a class:

(Person :name)
;=> "Person"

That would return the string "Person", which is the name of the class you’re defining.
Once you implement this, you can start adding more functionality to your little object
system. Consider the following implementation:

(defn new-class [class-name]
(fn [command & args]
(case command
:name (name class-name))))
(defmacro defclass [class-name]
" (def ~class-name (new-class '~class-name)))

So your little Person class is a function that closes over the class-name, passed in
along with a call to defclass. Again, remember that the notation '~class-name quotes

Closures 203

the value of the class-name argument, so that it’s passed in as the argument to new-
class as a symbol itself.

Your classes support a single message right now, which is :name. When passed
:name, the Person function returns the string "Person". Try the following at the
REPL now:

(defclass Person)
;=> #'user/Person
(Person :name)
;j=> "Person"

Further, because you’re simply working with vars and functions, the following also

works:

(def some-class Person)
;=> #'user/some-class
(some-class :name)

;=> "Person"

This is to show that the name of the class isn’t associated with the var (in this case
Person) but with the class object itself. Now that you can define classes, we’ll make it
so you can instantiate them.
CREATING INSTANCES
Because your classes are closures, you can also implement instantiated classes as clo-
sures. You’ll create this with a function called new-object that will accept the class
that you’d like to instantiate. Here’s the implementation:
(defn new-object [klass]

(fn [command & args]

(case command
:class klass)))

Here it is in action:
(def cindy (new-object Person))

As you can tell, the only message you can send this new object is one that queries its
class. You can say

(new-object Person)
;=> #i<user$new object$fn 2259 user$new object$fn 2259@1fl06fec>

That isn’t terribly informative, because it’s returning the class as the function object.
You can instead further ask its name:

((cindy :class) :name)
;j=> "Person"

204

CHAPTER 8 More on functional programming

You could add this functionality as a convenience message that an instantiated object
itself could handle:

(defn new-object [klass]
(fn [command & args]
(case command
:class klass
:class-name (klass :name))))

You can test this now, but you’ll need to create the object again, because you rede-
fined the class. Here it is:

(def cindy (new-object Person))
;=> #'user/cindy

(cindy :class-name)

j=> "Person"

Finally, you’re going to be instantiating classes a lot, so you can add a more convenient
way to do so. You’d like something like a new operator that’s common to several lan-
guages such as Java and Ruby. Luckily, you’ve already set up your class as a function
that can handle incoming messages, so you’ll add to the vocabulary with a :new mes-
sage. Here’s the new implementation of new-class:

(defn new-class [class-name]
(fn klass [command & args]
(case command
:name (name class-name)
:new (new-object klass))))

Notice that new-object accepts a class, and you need to refer to the class object from
within it. You were able to do this by giving the anonymous function a name (klass)
and then refer to it by that name in the :new clause. With this, creating new objects is
easier and more familiar (remember to evaluate the definition of Person again):

(defclass Person)

;=> #'user/Person

(def nancy (Person :new))
;=> #'user/nancy

(nancy :class-name)

;j=> "Person"

So here you are: you're able to define new classes as well as instantiate them.
Our next stop will be to allow your objects to maintain state.

OBJECTS AND STATE

In chapter 6 we explored Clojure’s support for managing state. In this section, you’ll
use one of those available mechanisms to allow objects in your object system to also
become stateful. You’ll use a ref so that your objects will be able to participate in coor-
dinated transactions. You’ll also expand the vocabulary of messages that your objects

Closures 205

can understand by supporting :set! and :get. They’ll allow you to set and fetch val-
ues from your objects, respectively.
Consider the following updated definition of the new-object function:

(defn new-object [klass]
(let [state (ref {})]
(fn [command & args]
(case command
:class klass
:class-name (klass :name)

:set! (let [[k v] args]
(dosync (alter state assoc k v))
nil)

:get (let [[key] args]
(estate key))))))

So now the messages that you can pass to your objects include :class, :class-name,
:set!, and :get. Let’s see your new stateful objects in action:

(def nancy (Person :new))
;=> #'user/nancy

(nancy :get :name)

;=> "Nancy Warhol"

You can also update your objects using the same :set! message, as follows:

(nancy :set! :name "Nancy Drew")
;=> nil

(nancy :get :name)

;=> "Nancy Drew"

You’re coming along in the journey to create a simple object system. You now have the
infrastructure to define classes, instantiate them, and manage state. Our next stop will
be to add support for method definitions.

DEFINING METHODS
So far, we’ve dealt with the state side of objects. In this section, we’ll start working on
behavior by adding support for method definitions.

In keeping with languages such as Java and C++, you’d like to support a syntax that
lists the methods along with the class definition, like so:

(defclass Person
(method age []

(* 2 10))
(method greet [visitor]
(str "Hello there, " visitor)))

You’ve started with simple methods. The age method, for instance, doesn’t take any
arguments and returns the result of a simple computation. Similarly, the greet method
accepts a single argument and returns a simple computation involving it.

206 CHAPTER 8 More on functional programming

Now that the expected syntax is laid out, you can go about the implementation.
First, you’ll work on defclass, to make the previous notation valid. Consider the fol-
lowing function, which operates on a single method definition s-expression:

(defn method-spec [sexpr]
(let [name (keyword (second sexpr))
body (next sexpr)]
[name (conj body 'fn)l))

This creates a vector containing the name of the method definition (as a keyword)
and another s-expression, which can later be evaluated to create an anonymous func-
tion. Here’s an example:

(method-spec ' (method age [] (* 2 10)))
;=> [:age (fn age [] (* 2 10))]

Because you’re going to specify more than one method inside the class definition, you’ll
need to call method-spec for each of them. The following method-specs function will
accept the complete specification of your class, pick out the method definitions by filter-
ing on the first symbol (it should be method), and then call method-spec on each:

(defn method-specs [sexprs]
(->> sexprs
(filter #(= 'method (first %)))
(mapcat method-spec)
(apply hash-map)))

The easiest way to see what’s going on is to examine a sample output:

(method-specs ' ((method age [] (* 2 10)
(method greet [visitor] (str "Hello there, " visitor))))
;=> {:age (fn age []1 (* 2 10)),
:greet (fn greet [visitor] (str "Hello there, " visitor))}

You now have a literal map that can be evaluated to return one containing keywords as
keys for each method definition and an associated anonymous function. This map
could then be passed to the new-class function for later use. Here’s the associated
revision of new-class:

(defn new-class [class-name methods]
(fn klass [command & args]
(case command
:name (name class-name)
:new (new-object klass))))

Now that all the supporting pieces are in place, you can make the final change to def -
class, which will allow you to accept method definitions:
(defmacro defclass [class-name & specs]

(let [fns (or (method-specs specs) {})]
" (def ~class-name (new-class '~class-name ~fns))))

Closures 207

Now, your desired syntax from before will work:

(defclass Person

(method age [] (* 2 10))

(method greet [visitor] (str "Hello there, " visitor)))
;=> #'user/Person

So you’ve successfully made it possible to specify methods along with the class
definitions. Note that the definition of new-class doesn’t yet do anything with
methods. Now, all you have to do is extend your objects so that you can invoke these
methods.

INVOKING METHODS

To be able to invoke a method on one of your objects, such as nancy, you’ll need some
way to look up the definition from the associated class. You’ll need to be able to query
the class of a given object for a particular method. Let’s add the :method message to
your classes, which would accept the name of the method you’re looking for. Consider
the following revision to the new-class function:

(defn new-class [class-name methods]
(fn klass [command & args]
(case command
:name (name class-name)
:new (new-object klass)
:method (let [[method-name] args]
(find-method method-name methods)))))

We haven’t defined find-method yet, so this code isn’t quite ready to be compiled. To
find a method from your previously created map of methods, you can do a simple
hash map lookup. Therefore, the implementation of £ind-method is simple:

(defn find-method [method-name instance-methods]
(instance-methods method-name))

With this addition, you can look up a method in a class, using the same keyword nota-
tion you’ve been using for all your other messages. Here’s an example:

(Person :method :age)
;=> #<user$age user$age@42443032>

Now that you can get a handle on the function object that represents a method,
you’re ready to call it. Indeed, you can call the previous function on the REPL, and it
will do what you laid out in the class definition:

((Person :method :age))
;=> 20

That works, but it’s far from pretty. You should be able to support the same familiar
interface of calling methods on objects that they belong to. Let’s expand the capability

208 CHAPTER 8 More on functional programming

of the message-passing system you’ve built so far to handle such methods also. Here’s
an updated version of new-object that does this:

(defn new-object [klass]
(let [state (ref {})]
(fn [command & args]
(case command
:class klass
:class-name (klass :name)

:set! (let [[k v] args]
(dosync (alter state assoc k v))
nil)

:get (let [[key] args]
(estate key))
(if-let [method (klass :method command)]
(apply method args)
(throw (RuntimeException.
(str "Unable to respond to " command))))))))

What’s added here is a default clause to case. If the message passed in isn’t one of
:class, :class-name, :set!, or :get, then you assume it’s a method call on the object.
You ask the class for the function by passing along the received command as the
method name, and if you get back a function, you execute it. Here it is in action:

(def shelly (Person :new))
;=> #'user/shelly

(shelly :age)

1=> 20

(shelly :greet "Nancy")
;=> "Hello there, Nancy"

Remember, for this to work, the definition of Person would need to be reevaluated
after these changes.

Once you're satisfied that your implementation does what you want so far, you’ll be
ready to move on to enabling objects to refer to themselves.

REFERRING TO THIS
So far, the method definitions have been simple. But there’s often a need for methods
within a class definition to call each other. Most programming languages that support
this feature do so via a special keyword (usually named this or self), which refers to
the object itself. Here you’ll support the same functionality by providing a special
name, which is also called this.

Once you’ve finished, you’d like to be able to say the following:

(defclass Person
(method age []1 (* 2 10))
(method about [diff]
(str "I was born about " (+ diff (this :age)) " years ago")))

Closures 209

Notice how the about method calls the age method via the this construct. To imple-
ment this, you’ll first create a var named this, so that the class definitions continue to
work (without complaining about unresolved symbols):

(declare “:dynamic this)

This var will need a binding when any method executes so that its bound value refers
to the object itself. A simple binding form will do, as long as you have something to
bind to. You’ll employ the same trick you did when you named the anonymous class
function klass earlier, by naming the anonymous object function thiz. Here’s the
updated code for the new-object function:

(defn new-object [klass]
(let [state (ref {})]
(fn thiz [command & args]
(case command
:class klass
:class-name (klass :name)
:set! (let [[k v] argsl
(dosync (alter state assoc k v))
nil)
:get (let [[key] args] (estate key))
(let [method (klass :method command)]
(if-not method
(throw (RuntimeException.
(str "Unable to respond to " command))))
(binding [this thiz]
(apply method args)))))))

And that’s all there is to it. Remember to evaluate the new, revised definition of new-
object (and Person), and then you can confirm that it works on the REPL:

(def shelly (Person :new))

;=> #'user/shelly

(shelly :about 2)

;=> "I was born about 22 years ago"

You’ve added almost all the features you wanted to when we started this section. The
last thing you’ll add is the ability of a class to inherit from another.

CLASS INHERITANCE

You’re about to add a final feature to your little object system. Traditional OOP lan-
guages such as Java and Ruby allow modeling of objects using inheritance so that
problems can be decomposed into hierarchies of functionality. The lower in a hierar-
chy you go, the more specific you get. For instance, Animal might be a parent class of
Dog. In this section, you’ll add the ability to do that.

210

CHAPTER 8 More on functional programming

The first thing you’ll do is allow the class definition to specify the parent class.
Imagine that your syntax will look like this, with a choice of the word extends to sig-
nify the hierarchy:

(defclass Woman
(extends Person)
(method greet [v] (str "Hello, " v))
(method age [1 (* 2 9)))

Here, the new Woman class inherits from a previously defined Person class. The term
extends is used to signify this relationship, as is common to other OO languages.

Now that you have your notation, you need to implement it. The first step is to write
a function that can extract the parent class information from the class definition. Before
you can do so, you have to decide what to do if a parent class isn’t provided.

Again, you’ll look at other languages for the answer. Your class hierarchies will all
be singly rooted, and the top-level class (highest parent class) will be OBJECT. We’ll
define this shortly. For now, you’re ready to write parent-class-spec, the function
that will parse the specification of the parent class from a given class definition:

(defn parent-class-spec [sexprs]
(let [extends-spec (filter #(= 'extends (first %)) sexprs)
extends (first extends-spec)]
(if (empty? extends)
'OBJECT
(last extends))))

To confirm that this works, try it at the REPL. You’ll pass it the specification part of a
class definition:

(parent-class-spec ' ((extends Person)
(method age []1 (* 2 9))))
;=> Person

Now that you have the parent class, you’ll pass it to the new-class function. You
don’t want to pass a symbol as the parent class but rather the var named by that sym-
bol. For instance, the value returned by the call to parent-class-spec is a Clojure
symbol. If you have a symbol, you can find the var named by the symbol using the
var special form:

(var map)
;=> #'clojure.core/map

There’s a reader macro for the var special form, #' (the hash followed by a tick). With
this information in hand, you can make the needed modification to defclass:

(defmacro defclass [class-name & specs]
(let [parent-class (parent-class-spec specs)
fns (or (method-specs specs) {})]
“ (def ~class-name (new-class '~class-name #'~parent-class ~fns))))

Closures 211

Note that you're now passing an extra parameter (the parent class) to the new-class
function, so you’ll have to change that to accommodate it:

(defn new-class [class-name parent methods]
(fn klass [command & args]
(case command

:name (name class-name)

:parent parent

:new (new-object klass)

:method (let [[method-name] args]

(find-method method-name methods)))))

There’s one more thing to handle before you can use your new defclass. You’re look-
ing up the parent class using the var special form, so you’ll need OBJECT to resolve to
something. It’s now time to define it:

(def OBJECT (new-class :0BJECT nil {}))

With these changes, the definition of the Woman class from earlier in this section
should work. Check this on the REPL as follows:

(defclass Person

(method age [] (* 2 10))
(method about [diff]
(str "I was born about " (+ diff (this :age)) " years ago")))

;=> #'user/Person

This is your parent class; now you’ll inherit from it to create the Woman class:

(defclass Woman
(extends Person)
(method greet [v] (str "Hello, " v))
(method age [1 (* 2 9)))

;=> #'user/Woman

You’ve only half-finished the job you started out to do. Although you can specify the
parent class in your calls to defclass, method calls on your objects won’t work right
with respect to parent classes.

The following illustrates the problem:

(def donna (Woman :new))

;=> #'user/donna

(donna :greet "Shelly")

;=> "Hello, Shelly"

(donna :age)

1=> 18

(donna :about 3)

RuntimeException Unable to respond to :about wuser/new-object/thiz--2733
(NO_SOURCE_PATH:1:1)

To fix this last error, you’ll have to improve the method lookup to find the method in
the parent class. Indeed, you’ll have to search up the hierarchy of classes (parent of

212 CHAPTER 8 More on functional programming

the parent of the parent ...) until you hit OBJECT. You’ll implement this new method
lookup by modifying the find-method function as follows:

(defn find-method [method-name klass]
(or ((klass :methods) method-name)
(if-not (= #'OBJECT klass)
(find-method method-name (klass :parent)))))

For this to work, you’ll need to have the classes handle another message, namely
:methods. Also, the classes will use this new version of find-method to perform a
method lookup. Here’s the updated code:

(defn new-class [class-name parent methods]
(fn klass [command & args]
(case command
:name (name class-name)
:parent parent
:new (new-object klass)
:methods methods
:method (let [[method-name] args]
(find-method method-name klass)))))

With this final change, your object system will work as planned. Figure 8.2 shows the
conceptual model of the class system you’ve built.

— OBJECT
-
Methods
Parent -
Class object
I:Class Figure 8.2 The minimal object system you’ve
built implements a major portion of features that
are supported by most common 00 systems.
State . . .
Everything ultimately derives from a common

entity called OBJECT. Instances look up the

class they derive from and look up methods
there. Methods can also be looked up in the
chain of hierarchy.

Instance object

Closures 213

Here’s the call to the :about method that wasn’t working a few paragraphs back:

(donna :about 3)
;=> "I was born about 21 years ago"

Again, remember to reevaluate everything after the last change, including the defini-
tions of Person, Woman, and donna itself. Notice that the :about method is being called
from the parent class Person. Further notice that the body of the :about method calls
:age on the this reference, which is defined in both Person and Woman. Your object
system correctly calls the one on donna, because you overrode the definition in the
Woman class.

You’ve completed what you set out to do. You’ve written a simple object system that
does most of what other languages provide. You can define classes, inherit from oth-
ers, create instances, and call methods that follow the inheritance hierarchy. Objects
can even refer to themselves using the this keyword. The following listing shows the
complete code.

(declare “:dynamic this)
(declare find-method)
(defn new-object [klass]
(let [state (ref {})]
(fn thiz [command & args]
(case command
:class klass
:class-name (klass :name)

:set! (let [[k v] args]
(dosync (alter state assoc k v))
nil)

:get (let [[key] args]
(estate key))
(let [method (klass :method command)]
(if-not method
(throw (RuntimeException.
(str "Unable to respond to " command))))
(binding [this thiz]
(apply method args)))))))
(defn new-class [class-name parent methods]
(fn klass [command & args]
(case command
:name (name class-name)
:parent parent
:new (new-object klass)
:methods methods
:method (let [[method-name] args]
(find-method method-name klass)))))
(def OBJECT (new-class :OBJECT nil {}))
(defn find-method [method-name klass]
(or ((klass :methods) method-name)
(if-not (= #'OBJECT klass)
(find-method method-name (klass :parent)))))

214

CHAPTER 8 More on functional programming

(defn method-spec [sexpr]
(let [name (keyword (second sexpr))
body (next sexpr)]
[name (conj body 'fn)]))
(defn method-specs [sexprs]
(->> sexprs
(filter #(= 'method (first %)))
(mapcat method-spec)
(apply hash-map)))
(defn parent-class-spec [sexprs]
(let [extends-spec (filter #(= 'extends (first %)) sexprs)
extends (first extends-spec)]
(if (empty? extends)
'OBJECT
(last extends))))
(defmacro defclass [class-name & specs]
(let [parent-class (parent-class-spec specs)
fns (or (method-specs specs) {})]
“ (def ~class-name (new-class '~class-name #'~parent-class ~fns))))

So that’s it, clocking in at a little over 50 lines of code. We haven’t added several fea-
tures that are provided by more robust object systems, but you can certainly do so.
For instance, this function doesn’t perform a lot of error checking. You should
extend this code to add syntactic checks to see if the made-up syntax is being used
correctly, for instance.

The key to this implementation is the lexical closure. It’s up to you to take a stand
on the old debate: Are objects a poor man’s closures, or is it the other way around?
More than anything else, though, it’s important to remember this: although this
example showed some of the power of functional programming (and that traditional
OOFP features aren’t particularly special), in most cases, such artificial constructs are
unnecessary in languages such as Clojure. We’ll talk about why this is next.

DATA ABSTRACTION
We mentioned that constructs such as the object system aren’t particularly useful in a
language such as Clojure. There are two reasons for this.

The first relates to abstraction. Despite popular belief, you don’t need objects to
create data abstraction. There’s a real alternative in Clojure in its core data structures:
each implementation of the sequence abstraction (the hash map, the vector, and so
on) is a suitable candidate to represent data in an application. Given that these are
immutable and therefore thread safe, there’s no strict need for procedural abstrac-
tions that wrap their mutation. Further, when you need to make a new abstraction of
your own that existing types might want to participate in, you can use Clojure’s proto-
col feature introduced in the next chapter.

The second reason is a bit more subjective. Alan Perlis once said that it’s better to
have 100 functions that operate on a single data structure instead of 10 functions that
operate on 10 data structures.! Having a common data structure (in Clojure’s case,

! “Epigrams on Programming,” SIGPLAN Notices 17(9), September 1982. Archived at http://goo.gl/6PtaEm.

http://goo.gl/6PtaEm

8.4

Summary 215

the sequence abstraction) allows for more code reuse, because code that works on
sequences can be used no matter what specific data it contains. An example is the
large sequence library, which works no matter what the specific implementation is.

Using the let-overlambda technique shown previously has its value, as you saw in
the earlier part of the chapter. But creating an object system like the one created in
the second half raises a barrier of inoperability with other libraries that don’t know
about it. In conclusion, although the object system serves to illustrate the use of clo-
sures and some traditional OOP concepts, using the builtin core data structures is a
much better choice in your own programs.

FINAL NOTES

It’s worth recalling that the implementation of this little object system was done
using functions. Fewer than half of the total lines of code were for manipulating
the functions, and the rest were to make the syntax look a certain way. The macro
defclass and the supporting functions (parent-class-spec, method-specs, and
method-spec) account for over half the code. This syntactic layer sports an arbi-
trarily chosen syntax. The semantics of the object system wouldn’t change if you
decided to use a different syntax. The syntax isn’t important (in this case certainly,
and also in general); instead, it’s the underlying mechanisms and features that make
a piece of code useful. Having said that, a nice syntax certainly helps! The first rea-
son is that it makes for convenient, intuitive use. The second is that you can write
error checkers that analyze the code as data and give meaningful errors that are eas-
ier to understand and correct. You could certainly do more at the syntactic level to
make this library easier to use.

Similarly, there are many features that you could add at a semantic level. For
instance, there’s no reason for a class hierarchy to be static. Instead of it being cast
in stone when defclass is called, you could add messages that support modifying
the hierarchy at runtime. As an example, your classes could respond to :set-class!
and :set-parent!. Adding such features might be an interesting exercise for a
spare afternoon.

Summary

This chapter was about functional programming, the understanding of which is cru-
cial to programming in Clojure. If you're coming from an imperative background,
this transition can take some effort. But the results are sweet, because functional code
is more expressive, more reusable, and usually shorter.

We started out by having you create your own implementations of map, reduce, and
filter—the workhorses of functional programming languages. Thinking recursively
and in terms of lazy sequences is another important skill that will have a big impact on
your Clojure programs.

We then looked at the technique of using partial function application to create
specialized functions. To understand how partial application works, we explored
lexical closures, another fundamental tool in the functional programmer’s tool belt.

216

CHAPTER 8 More on functional programming

Once we presented a basic explanation of them, you gathered everything from this
chapter (and from the ones so far!) to create your own little object system. This exer-
cise was meant to demonstrate the power of closures and to also shed light on the fact
that functional programming transcends traditional OOP.

Next we’ll look at Clojure’s protocols, which allow you to add function implemen-
tations specific to a particular object type.

Protocols, records,
and types

This chapter covers

= An overview of the expression problem
m A custom solution to the expression problem
m Clojure’s solution to the expression problem

m Working with types and records: deftype,
defrecord, and reify

Abstraction is an important tenet of software development because it results in
code that’s more maintainable and extensible. Clojure itself is built on abstractions.
For instance, most things in Clojure are coded to interfaces rather than being con-
crete implementations. This allows for reuse of code that expects those interfaces
and allows for the seamless addition of more implementations to the mix.

Sooner or later, during your time on most projects, you’ll run into an abstraction-
oriented issue known as the expression problem. It has to do with how to cleanly
extend or use existing code—either something you wrote yourself or, more impor-
tant, something you don’t own. In this chapter, we’ll explore the expression prob-
lem in some depth, as well as Clojure’s approach to handling it (protocols). Then,
we’ll come up with a solution. Finally, we’ll explore the Clojure solution in more
depth by looking at protocols, data types, and the reify macro.

217

218

9.1

9.1.1

CHAPTER 9 Protocols, records, and types

The expression problem

Let’s imagine that you've been writing an application to manage employee expenses,
one that will eventually replace an existing Java application that does a similar job.
Naturally, you’re writing it in Clojure. If you find yourself needing to take two or more
classes or sets of classes (or any other abstractions) and make them work together in a
seamless way, you're likely experiencing what’s known as the expression problem. This
is a situation that comes up quite often. Whatever solution you come up with to do
this, it’s likely you’ll need to support further extensibility, perhaps to support even
more operations or data types.

There are two sides to solving the expression problem—namely, data types and the
operations on them. We’ll start by looking at the operations side of the situation and
follow up by looking at a couple ways to define data types. But before we dive into that,
let’s take a moment to set up the example scenario.

Setting up the example scenario

There are two parts to this example: new code written in Clojure and legacy code writ-
ten in Java. Both will have to coexist in the same program, so the functions you write
need to operate on both native Clojure and native Java types seamlessly. First, you’ll
write code using only the Clojure features you’ve learned so far; then we’ll take a look
at the legacy Java code.

CREATING A BASE
Here’s a portion of the expense namespace, with a function to create a simple map
containing expense information:

(ns clj-in-act.ch9.expense
(:import [java.text SimpleDateFormat]))
(defn new-expense [date-string dollars cents category merchant-name]
{:date (.parse (SimpleDateFormat. "yyyy-MM-dd") date-string)
ramount-dollars dollars
:amount-cents cents
:category category
:merchant -name merchant-name})

As you’ve seen several times already, using a map is straightforward and is often the idi-
omatic way in Clojure to hold data of any kind. Now, for the purposes of illustration,
here’s a function called total-cents that computes the expense amount in cents:

(defn total-cents [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))

Nothing in this function ought to be unfamiliar, including the threading macro,
which you saw in chapter 2.

The expression problem 219

ADDING SOME FUNCTIONS
You’ll also add a function to calculate the total amount, given a list of expenses, and
possibly a criteria function by which to select expenses from a list:

(defn total-amount
([expenses-1ist]
(total-amount (constantly true) expenses-list))
([pred expenses-list]
(->> expenses-list
(filter pred)
(map total-cents)
(apply +))))

Then you’ll add a couple functions to help you create the predicate functions that can
be used with total-amount, specifically to select a particular category of expenses:

(defn is-category? [e some-category]
(= (:category e) some-category))
(defn category-is [category]

o

(is-category? % category))

The second function is syntactic sugar to help create single-argument predicates so
your code reads easier. Let’s see how it looks by having you write some code that tests
these functions. Consider a new namespace, such as expense-test, which you’ll start
by creating a few sample expenses to play with:

(ns clj-in-act.ch9.expense-test
(:require [clj-in-act.ch9.expense :refer :all]
[clojure.test :refer :all]l))

(def clj-expenses [(new-expense "2009-8-20" 21 95 "books" "amazon.com")
(new-expense "2009-8-21" 72 43 "food" "mollie-stones")
(new-expense "2009-8-22" 315 71 "car-rental" "avis")
(

new-expense "2009-8-23" 15 68 "books" "borders")])

TESTING THE CODE
Here’s a test that uses this data set to compute the total amounts:

(deftest test-clj-expenses-total
(is (= 42577 (total-amount clj-expenses)))
(is (= 3763 (total-amount (category-is "books") clj-expenses))))

Clojure unit tests

This chapter may make it seem like you’ve been thrown into the deep end of the pool
with regard to writing unit tests in Clojure. Rest assured that the next chapter will go
into a lot of detail around this developer activity. You'll need to know some basics to
get through these pages.

220

CHAPTER 9 Protocols, records, and types

(continued)

You're going to use the clojure. test library to write the tests. You start by require-
ing (or use-ing) the clojure.test hamespace and using the deftest macro to write
tests. You run tests by calling the run-tests function, passing in symbols of your
test namespaces. In this example, you’d evaluate

(run-tests 'clj-in-act.ch9.expense-test)

This would output the results of your test run, and you can see if your tests passed.

If you run these tests, you'll see that they pass. So now you have some basic code that
shows the intent of the application. You can imagine a lot more functionality that helps
an organization track expenses, but you’ve written sufficient code to demonstrate the
issues you set out to face, so let’s move on.

THE JAVA WORLD

It’s now time to face a kind of reality you often face when working on application
rewrites: business reasons might compel you to deal with the old codebase alongside
the new one. For the purposes of this example, it means that you’re going to have to
deal with instances of the Java-based Expense class. You could imagine such a class
being similar to the one shown in the following listing.

package com.curry.expenses;
import java.util.Calendar;
import java.text.SimpleDateFormat;
import java.text.ParseException;
public class Expense {
private Calendar date;
private int amountDollars;
private int amountCents;
private String merchantName;
private String category;
public Expense (String dateString, int amountDollars, int amountCents,
String category, String merchantName) throws ParseException {
this.date = Calendar.getInstance() ;
this.date.setTime (new SimpleDateFormat (
"yyyy-MM-dd") .parse (dateString)) ;
this.amountDollars = amountDollars;
this.amountCents = amountCents;
this.merchantName = merchantName;
this.category = category;
}
public Calendar getDate() {
return date;
}

public int getAmountDollars() {
return amountDollars;

The expression problem

public int getAmountCents() {
return amountCents;
1

public String getMerchantName () {
return merchantName;
1

public String getCategory() {
return category;
}

public int amountInCents() {

return this.amountDollars*100 + this.amountCents;

}

221

To begin working with this class, you’ll write a sanity test to ensure everything is in

order. Consider the following:

(def java-expenses [(Expense. "2009-8-24"
(Expense. "2009-8-25"

(deftest test-java-expenses-total
(let [total-cents (map #(.amountInCents
(is (= 7406 (apply + total-cents)))))

Getting JAR files onto the classpath

Once you compile the Expense class and create a JAR file, you'll need to make sure
that it’s included in the Clojure classpath. With Lein version 2.x, the easiest way to
do this is to create a local Maven repository, deploy your JAR file into there, and then

refer to the dependency in your project.clj file.

There’s a convenient Lein plugin called lein-localrepo that makes this much eas-
ier. It’s an open source contribution to the Clojure ecosystem, and it's available on

44 95 "books" "amazon.com")
29 11 "gas" "shell")])

o
%)

java-expenses)]

GitHub at https://github.com/kumarshantanu/lein-localrepo.

It’'s recommended because it makes adding local JAR files to your project a breeze.

Just follow the instructions at the GitHub web address.

You’'ll need to import your Expense class into the test namespace for this to work.
Once you do, you’ll see that running this test will result in it passing. Now that you’re
able to access the Java class, you need to tackle the situation where you have both
kinds of expenses together. For instance, you have to deal with a list of Clojure
expense maps constructed via the new-expense function, as well as instances of the

com.curry.expenses .Expense class.

You’ll capture this requirement in another test. Consider the following:

(def mixed-expenses (concat clj-expenses java-expenses))

(deftest test-mixed-expenses-total

(is (= 49983 (total-amount mixed-expenses)))

(is (= 8258 (total-amount (category-is "books") mixed-expenses))))

https://github.com/kumarshantanu/lein-localrepo

222

9.1.2

CHAPTER 9 Protocols, records, and types

Now this test won’t pass. Indeed, the first assertion will print a long exception stack
trace, because total-amount (and the underlying total-cents and is-category?)
function only knows how to deal with Clojure map versions of expenses. To fix this,
you’re going to have to deal with a design issue.

A closer look at the expression problem and some
potential solutions

Philip Wadler is an ACM fellow and a computer science professor at the University of
Edinburgh. He has made several important contributions to the field of functional
programming, including the theory behind the Haskell programming language. He
also coined the term expression problem:

The Expression Problem is a new name for an old problem. The goal is to
define a data-type by cases, where one can add new cases to the data-type
and new functions over the data-type, without recompiling existing code,
and while retaining static type safety (e.g., no casts).!

How can you add functionality to the code (your data type) so it plays well with code
(data types) written by someone else (or any other code that you have no control
over)? The last test you wrote to handle the case of mixed expenses has forced you to
face the expression problem. Specifically, you need the total-amount function to accept
and work with an entirely new data type that has its own set of operations (functions)
defined for it. You’d also like the category-is function to create functions that can
operate on this new data type, even though the new data type has no notion of such a
category selector function right now.

The expression problem is common in our industry. There are several approaches
to handle the issue, and we’ll briefly look at a few.

WRAPPERS

Because you have no control over the new data type (the Expense class), you could
create a new wrapper class around it with the right methods that you can call from
your program.

The trouble with this approach is that it increases incidental complexity because
you’'ve added a new class to your system. You’ve confused the identity: is an object
that wraps an instance of Expense identical to it? How should code written else-
where treat this new wrapper class if it’s passed in? Such an identity crisis is an exam-
ple of the kind of nonlocal trouble that can arise when an instance of the wrapper is
passed to unsuspecting code elsewhere in the system. You’d also have to create a
wrapper class each time a new data type such as this comes along, leading to an
explosion of such wrappers.

1

Philip Wadler, The Expression Problem, November 12, 1998, http://homepages.inf.ed.ac.uk/wadler/papers/

expression/expression.txt.

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

9.1.3

The expression problem 223

When all is said and done, languages such as Java often have no other choice than
to go this route.

IMIONKEY PATCHING

Once classes have been written and compiled in Java, they can’t be modified (without
manipulating bytecode). This is in contrast with languages such as Ruby, which are
more dynamic and support open classes—classes that can be changed by anyone using
the class, without directly editing the source code of that class. This is called monkey
patching. Often, the syntax looks the same as writing the class the first time around, and
any new methods defined (or redefined) become part of the original class.

The problem with this approach is that it’s a dangerous one, almost even more so
than the wrapper approach. Because all changes to a class happen in a global manner
(the class itself being the namespace), it has the potential for collisions. If you open a
class and monkey patch it with a new method named total-cents, and someone else
comes along and does the same, they will overwrite your patch. Such a collision can
cause insidious problems, because the cause isn‘t immediately obvious.

IF-THEN-ELSE

Finally, there’s the approach of not using any well-structured tactic at all and checking
for types inline with the code as needed. Client code such as the total-amount func-
tion will need to do different things depending on whether it was passed a Clojure
map or an instance of the Java Expense class, using good-old if-then-else constructs.

This quickly gets complex, depending on how many data types need to be han-
dled. Moreover, if support for a new data type needs to be added at a later point, it
isn’t possible without modifying the code in all the places where this type checking is
done. The incidental complexity of this approach is too great given that the solution
is both rigid and inelegant.

What’s needed is an approach that doesn’t suffer from these problems. The Clo-
jure programming language has the feature for this, and you saw it earlier in chapter 4.
We’re talking about multimethods, and in the next section, you’ll write an implemen-
tation that works as desired.

Clojure’s multimethods solution

Multimethods allow you to decouple data types and operations on the data types in an
elegant manner. We demonstrated this in chapter 4, where you used multimethods to
handle a situation that would have required the visitor pattern in a language such as
Java. In this section, you’ll use multimethods to get the latest test to pass without mod-
ifying the Java code for the Expense class and without creating wrappers or monkey
patches.

Let’s refresh your memory by looking at the test that won’t pass right now:

(deftest test-mixed-expenses-total
(is (= 49983 (total-amount mixed-expenses)))
(is (= 8258 (total-amount (category-is "books") mixed-expenses))))

224

CHAPTER 9 Protocols, records, and types

As noted before, the trouble is that the total-amount, is-category?, and total-
cents functions only know how to work with Clojure maps. Your first step, then, will
be to address this issue by changing the implementation of the total-cents and
is-category? functions. You won’t touch total-amount, because it’s an example of
client code (perhaps written by someone using the expense library). You can assume
that you don’t control it and, indeed, that it’s a requirement of solving the expression
problem, and you can’t change the alien data type or the client code.

Consider the following code, which is a replacement of the total-cents function:

(defmulti total-cents class)
(defmethod total-cents clojure.lang.IPersistentMap [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))

Similarly, the following code will serve as the replacement of the is-category? function:

(defmulti is-category? (fn [e category] (class e)))
(defmethod is-category? clojure.lang.IPersistentMap [e some-category]
(= (:category e) some-category))

You haven’t changed a lot of code; the bodies of the functions are the same as before.
All you did was convert the functions to multimethods and redefine the old functions
as methods, focusing on the fact that the expense object will be an instance of
clojure.lang.IPersistentMap (which all Clojure maps are). Refer to chapter 4 to get
a refresher on how this works with respect to dispatch functions and dispatch values.

At this point, if you run the tests, the old tests should still pass. Also, the new test
will still fail because you haven’t written any code to deal with the Java Expense class.
You’ll do that now, starting with the total-cents function:

(defmethod total-cents com.curry.expenses.Expense [e]
(.amountInCents e))

And similarly, here’s the is-category? function:

(defmethod is-category? com.curry.expenses.Expense [e some-category]
(= (.getCategory e) some-category))

With this, the new test will pass. Note, once again, that you didn’t change the Java
Expense class in any way: you didn’t write a wrapper class for it, and you didn’t change
the calling code (the total-amount function). You also kept all the code in your own
namespace, allowing others to create their own functions named total-cents and
is-category? without the fear of collisions.

Using multimethods has allowed you to solve this problem of handling new data
types in an easy and elegant manner. You’re even set up to deal with more data types
now, for example, if you need to ever deal with a third-party expense library.

9.2

9.2.1

Examining the operations side of the expression problem 225

There are a couple of downsides to this approach, though. The first is that even
though multimethods allow you to dispatch via arbitrary functions, you’re using only
the class of the first argument, which is either the Clojure map containing expense
information or the Java Expense class. You don’t need the full power of multimethods
here, and it would be nice if you didn’t have to explicitly write the dispatch functions
the way you did previously.

The second issue is that even though the two multimethods you wrote are related
to the task of computing totals, it isn’t obvious in the code. If someone were to read
this code later, the fact that the two belong together wouldn’t jump out at them. This
is even more apparent when you have several multimethods that should ideally show
some kind of logical grouping. We’ll solve these issues next.

Examining the operations side of the expression
problem

In this section, we’ll solve the two issues mentioned in the previous section. First, you
don’t need the conceptual or syntactic complexity of full multimethods when you only
want to dispatch on the class of the first argument. Second, you want to group related
multimethods together so they read better.

We’ll call the solution to this modus operandi, which is a Latin phrase that means
“method of operating.” The name reflects our intention here, which is to describe a
set of operating procedures for something.

def-modus-operandi
Let’s start with the code you’d like to be able to write:

(def-modus-operandi ExpenseCalculations
(total-cents [e])
(is-category? [e categoryl))

What you’re saying here is that you're defining a modus operandi called Expense-
Calculations that will consist of two methods, namely total-cents and is-category?.
You won’t specify the dispatch function as you did before, because you always want it
to be the class of the first argument of each method. In this case, both methods will
dispatch based on the class of the expense object, be it a Clojure map or the Java
Expense class or any other data type you end up supporting.

Now, let’s look at implementing it. As you can imagine, def-modus-operandi is a
macro. Here’s the code along with a couple of associated helper functions to make
the code easier to read:

(defn dispatch-fn-for [method-args]
" (fn ~method-args (class ~(first method-args))))
(defn expand-spec [[method-name method-args]]
" (defmulti ~method-name ~(dispatch-fn-for method-args)))
(defmacro def-modus-operandi [mo-name & specs]
~ (do
~@ (map expand-spec specs)))

226 CHAPTER 9 Protocols, records, and types

So all you’re doing is generating code that creates multimethods. Here’s what the
expanded version looks like:

(do
(clojure.core/defmulti total-cents (clojure.core/fn [e]
(clojure.core/class e)))
(clojure.core/defmulti is-category? (clojure.core/fn [e category]
(clojure.core/class e))))

Notice that the expanded form of is-category? is the same as when you wrote it by
hand earlier. The expansion for total-cents is slightly different, only because you
can generate the same dispatch function no matter how many arguments the func-
tion takes.

Now that you have a way to specify the methods in your modus operandi, you need
a way to detail it for the types you'd like to support. We’ll do that next.

9.2.2 detail-modus-operandi

After defining the what of a modus operandi, you need to define the Aow. You’ll create
a new macro called detail-modus-operandi that you’ll use in the following manner:

(detail-modus-operandi ExpenseCalculations
clojure.lang.IPersistentMap
(total-cents [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))
(is-category? [e some-category]
(= (:category e) some-category)))

Most of the code should be familiar to you, because it’s nearly identical to the code
from the previous section. Because all the methods are being defined for the same dis-
patch value, you’ve made it so that you have to specify it only once. Here’s the imple-
mentation of the macro, along with an associated helper function:

(defn expand-method [data-type [name & body]]
" (defmethod ~name ~data-type ~@body))
(defmacro detail-modus-operandi [mo-name data-type & fns]
" (do
~@ (map # (expand-method data-type %) fns)))

The expansion of this call to detail-modus-operandi is as follows:

(do
(clojure.core/defmethod total-cents clojure.lang.IPersistentMap [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))
(clojure.core/defmethod is-category?
clojure.lang.IPersistentMap [e some-category]
(= (:category e) some-category)))

9.2.3

Examining the operations side of the expression problem 227

So you’ve done what you set out to do. You have a new abstraction that sits atop multi-
methods that behave like subtype polymorphism. The methods dispatch on the type
of the first argument.

Notice that even though you specified the name of your modus operandi here
(called ExpenseCalculations), you haven’t used it for anything. You can make your
modus operandi more useful if you use the named objects to track such things as what
it contains and who implements it. Let’s do that next.

Tracking your modus operandi

So far, you've allowed declarations of a modus operandi that’s a set of related multi-
methods that dispatches on the type of the first argument. In this section, you’ll collect
some meta-information about these methods that you can use to programmatically
query things about the modus operandi.

DURING DEF-MODUS-OPERANDI

The first thing you’ll do is define a var with the name of the modus operandi. Doing
that by itself is easy enough: you add a call to def in the def-modus-operandi macro.
The question is what should the var be bound to? A simple option is to create a map
containing information about the modus operandi. Try that approach:

(defmacro def-modus-operandi [mo-name & specs]
" (do
(def ~mo-name ~(mo-methods-registration specs))
~@ (map expand-spec specs)))

You’ve delegated to a helper function called mo-methods-registration, so imple-
ment that next:

(defn mo-method-info [[name args]]
{ (keyword name) {:args ~(quote ~args)}})
(defn mo-methods-registration [specs]
(apply merge (map mo-method-info specs)))

You’re collecting the name and arguments of each method into a map. This map, with
all the information about the methods being specified as part of the modus operandi,
will become the root binding of a var by the same name as the modus operandi. You
can try it. First, you’ll redefine the modus operandi:

(def-modus-operandi ExpenseCalculations
(total-cents [e])
(is-category? [e category]l))

;=> #'user/is-category?

Next, see what the ExpenseCalculations var is bound to:

ExpenseCalculations
;=> {:is-category? {:args [e categoryl}, :total-cents {:args [el}}

228

CHAPTER 9 Protocols, records, and types

So you have the basic information. Next, you’ll collect some more information every
time detail-modus-operandi is called.

DURING DETAIL-MODUS-OPERANDI
To collect information of the implementer of a modus operandi, you’ll first need to
pass the modus operandi into the expand-method function:

(defmacro detail-modus-operandi [mo-name data-type & fns]
" (do
~@ (map # (expand-method mo-name data-type %) fns)))

Now that the expand-method knows which modus operandi it’s going to create a
method for, you can collect information about it:

(defn expand-method [mo-name data-type [method-name & bodyl]
" (do
(alter-var-root (var ~mo-name) update-in
[(keyword '~method-name) :implementors] conj ~data-type)
(defmethod ~method-name ~data-type ~@body)))

To better understand this addition to the expand-method function, let’s talk about the
data you’re collecting. Recall that the modus operandi var is bound to a map that con-
tains a key for each method. The value for each such key is another map. The only key
in the inner map so far is :args, and to collect the data types of the implementors to
this map, you’ll introduce another key called :implementors. So here you’re going
to conj the data type onto the list of implementors (if any) each time a method of a
modus operandi is implemented.
Finally, let’s look at the function alter-var-root. Here’s the doc string:

(doc alter-var-root)

clojure.core/alter-var-root

([v £ & argsl)
Atomically alters the root binding of var v by applying f to its
current value plus any args

So you’re passing it the var for the modus operandi and the function update-in.
The arguments to update-in are a sequence of keys that locates a nested value and
a function that will be applied to the existing value along with any other arguments.
In this case, update-in is passed the function conj along with the data type you’d
like recorded.

Phew, that’s a lot of work for a single line of code! The following listing shows the
complete implementation of modus operandi in a single namespace.

(ns clj-in-act.ch9.modus-operandi)
(defn dispatch-fn-for [method-args]
" (fn ~method-args (class ~(first method-args))))

Examining the operations side of the expression problem 229

(defn expand-spec [[method-name method-args]]
" (defmulti ~method-name ~(dispatch-fn-for method-args)))
(defn mo-method-info [[name args]]
{ (keyword name) {:args " (quote ~args)}})
(defn mo-methods-registration [specs]
(apply merge (map mo-method-info specs)))
(defmacro def-modus-operandi [mo-name & specs]
~ (do
(def ~mo-name ~(mo-methods-registration specs))
~@ (map expand-spec specs)))
(defn expand-method [mo-name data-type [method-name & body]]
" (do
(alter-var-root (var ~mo-name) update-in [(keyword '~method-name)
:implementors] conj ~data-type)
(defmethod ~method-name ~data-type ~@body)))
(defmacro detail-modus-operandi [mo-name data-type & fns]
~ (do
~@(map # (expand-method mo-name data-type %) fns)))

Let’s look at it in action. First, make a call to detail-modus-operandi:

(detail-modus-operandi ExpenseCalculations
clojure.lang.IPersistentMap
(total-cents [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))
(is-category? [e some-categoryl
(= (:category e) some-category)))
;=> #<MultiFn clojure.lang.MultiFn@4aad8dbc>

Now look at the ExpenseCalculations var:

ExpenseCalculations
;j=> {:is-category? {:implementors (clojure.lang.IPersistentMap),
:args [e categoryl},
:total-cents {:implementors (clojure.lang.IPersistentMap),
rargs [el}}

As you can see, you've added the new :implementors key to the inner maps, and they
have a value that’s a sequence of the implementors so far. Now implement the modus
operandi for the Java Expense class:

(detail-modus-operandi ExpenseCalculations
com.curry.expenses.Expense
(total-cents [e]
(.amountInCents e))
(is-category? [e some-categoryl
(= (.getCategory e) some-category)))
;=> #<MultiFn clojure.lang.MultiFn@4aad8dbc>

230

CHAPTER 9 Protocols, records, and types

You can now see what the ExpenseCalculations var is bound to:

ExpenseCalculations
;=> {:is-category? {:implementors (com.curry.expenses.Expense
clojure.lang.IPersistentMap),
:args [e categoryl},
:total-cents {:implementors (com.curry.expenses.Expense
clojure.lang.IPersistentMap),
rargs [el}}

And there you have it: you're collecting a sequence of all implementing classes inside
the map bound to the modus-operandi var. You should now ensure that everything
still works with the original code. Figure 9.1 shows a conceptual view of the process of
defining a modus operandi and then detailing it. Listing 9.3 shows the complete code
for the expense namespace.

Moqme def-modus-operandi » detail-modus-operandi
design
Y Y
modus-operandi var Updated
(for introspection) modus-operandi var
[[
[[
defmulti defmethod
After expansion of After expansion of
def-modus-operandi detail-modus-operandi

Figure 9.1 Calling def-modus-operandi creates a var that will hold information about
the modus operandi that can later be used to introspect it. The macro itself makes as many
calls to defmulti as needed. The detail-modus-operandi macro is the other side of
the modus operandi concept: it fills out the implementation details by expanding to as many
defmethod calls as specified. It also updates the modus-operandi var to reflect the
implementor information.

(ns clj-in-act.ch9.expense-modus-operandi
(:require [clj-in-act.ch9.modus-operandi :refer :alll)
(:import [java.text SimpleDateFormat]
[java.util Calendar]))

Examining the operations side of the expression problem 231

(defn new-expense [date-string dollars cents category merchant-name]
(let [calendar-date (Calendar/getInstance)]
(.setTime calendar-date
(.parse (SimpleDateFormat. "yyyy-MM-dd") date-string))
{:date calendar-date
:amount-dollars dollars
:amount-cents cents
:category category
:merchant-name merchant-name}))
(def-modus-operandi ExpenseCalculations
(total-cents [el)
(is-category? [e categoryl))
(detail-modus-operandi ExpenseCalculations
clojure.lang.IPersistentMap
(total-cents [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))
(is-category? [e some-category]
(= (:category e) some-category)))
(detail-modus-operandi ExpenseCalculations
com.curry.expenses.Expense
(total-cents [e]
(.amountInCents e))
(is-category? [e some-category]
(= (.getCategory e) some-category)))
(defn category-is [categoryl]
(is-category? % category))
(defn total-amount
([expenses-1ist]
(total-amount (constantly true) expenses-list))
([pred expenses-1list]
(->> expenses-list
(filter pred)
(map total-cents)
(apply +))))

Similarly, the following listing shows the tests you’ve written so far, all in one place.
You’ll run the tests next.

Listing 9.4 Testing the implementation of modus operandi calculating expense totals

(ns clj-in-act.ch9.expense-test
(:import [com.curry.expenses Expense])
(:require [clj-in-act.ch9.expense-modus-operandi :refer :alll
[clojure.test :refer :alll))
(def clj-expenses [(new-expense "2009-8-20" 21 95 "books" "amazon.com")
(new-expense "2009-8-21" 72 43 "food" "mollie-stones")
(new-expense "2009-8-22" 315 71 "car-rental" "avis")
(new-expense "2009-8-23" 15 68 "books" "borders")])
(deftest test-clj-expenses-total
(is (= 42577 (total-amount clj-expenses)))
(is (= 3763 (total-amount (category-is "books") clj-expenses))))

232

CHAPTER 9 Protocols, records, and types

(def java-expenses [(Expense. "2009-8-24" 44 95 "books" "amazon.com")
(Expense. "2009-8-25" 29 11 "gas" "shell")])

(deftest test-java-expenses-total

(let [total-cents (map #(.amountInCents %) java-expenses)]

(is (= 7406 (apply + total-cents)))))

(def mixed-expenses (concat clj-expenses java-expenses))
(deftest test-mixed-expenses-total

(is (= 49983 (total-amount mixed-expenses)))

(is (= 8258 (total-amount (category-is "books") mixed-expenses))))

These tests now all pass:

(use 'clojure.test) (run-tests 'clj-in-act.ch9.expense-test)
Testing clj-in-act.ch9.expense-test

Ran 3 tests containing 5 assertions.

0 failures, 0 errors.

;j=> {:type :summary, :test 3, :pass 5, :fail 0, :error 0}

Finally, before wrapping up this section, you’ll write a couple of functions that will
make it easy to query data about your modus operandi, like ExpenseCalculations.

QUERYING MODUS OPERANDI
The first function you’ll write discerns what data types implement a particular modus
operandi. Consider this code:

(defn implementors [modus-operandi method]
(get-in modus-operandi [method :implementors]))

And this allows you to do things like this:

(implementors ExpenseCalculations :is-category?)
;=> (com.curry.expenses.Expense clojure.lang.IPersistentMap)

Now you’ll write another function that when given a class of a particular data type can
tell you if it implements a particular method of a modus operandi. Here’s the code:

(defn implements? [implementor modus-operandi method]
(some #{implementor} (implementors modus-operandi method)))

Now test it at the REPL:

(implements? com.curry.expenses.Expense ExpenseCalculations :is-category?)
;=> com.curry.expenses.Expense

Note that implements? returns the class itself, which is truthy. Here’s a negative

scenario:

(implements? java.util.Date ExpenseCalculations :is-category?)
;=> nil

9.24

Examining the operations side of the expression problem 233

Now that you have a function such as implements?, you can also write a broader func-
tion to see if a class implements a modus operandi completely:

(defn full-implementor? [implementor modus-operandil
(->> (keys modus-operandi)
(map # (implements? implementor modus-operandi %))
(not-any? nil?)))

Here it is in action:

(full-implementor? com.curry.expenses.Expense ExpenseCalculations)
i=> true

To test the negative side, you’ll partially implement the modus operandi:

(detail-modus-operandi ExpenseCalculations
java.util.Date
(total-cents [e]
(rand-int 1000)))
;=> #<MultiFn clojure.lang.MultiFn@746acl8c>

And now you can test what you were after:

(full-implementor? java.util.Date ExpenseCalculations)
;=> false

You can implement other functions such as these, because the value bound to the
modus-operandi var is a regular map that can be inspected like any other. Next, let’s
examine the downsides to the modus operandi approach to the expression problem.

Error handling and trouble spots in this solution

In this section, you took multimethods and wrote a little DSL on top of them that
allows you to write simpler, clearer code when you want to dispatch on the class of the
first argument. You were also able to group related multimethods together via this
new syntax, and this allowed the code to be self-documenting by communicating that
certain multimethods are related to each other.

What we haven’t touched on at all is error handling. For instance, if you eval the
same detail-modus-operandi calls multiple times, the data-collection functions
would add the class to your modus operandi metadata map multiple times. It’s an easy
fix, but this isn’t the most robust code in the world, because it was written to demon-
strate the abstraction.

There are other trouble spots as well. For instance, because you built this on top of
multimethods, and multimethods support hierarchies (and Java inheritance hierar-
chies by default), the implements? and related functions won’t give accurate answers
as they stand now.

Further, because this is such a bare-bones implementation, many other features
might be desirable in a more production-ready version. The other downside is that

234

9.3

9.3.1

CHAPTER 9 Protocols, records, and types

there’s a small performance hit when using multimethods because they have to call
the dispatch function and then match the dispatch value against available multi-
methods. After all, this approach is syntactic sugar on top of multimethods.

In the next section, you’ll see Clojure’s version of the solution.

Examining the data types side of the expression
problem with protocols

You’ve already seen what the expression problem is and a variety of ways to solve it.
Clojure’s multimethods are perfectly suited to writing code that allows independent
extension of the supported data types and operations. You also created an abstraction
called modus operandi that supports the most common use of multimethods: single
dispatch (the first argument) based on the type (or class).

Clojure’s multimethods are more expressive than Java’s object methods but much
slower because Java is optimized for single dispatch on type, not arbitrary multiple dis-
patch. In most cases the performance difference is negligible and the increased
expressiveness of code more than makes up for it. But as Clojure matures and moves
more of its implementation into Clojure itself, there needs to be a way to support its
abstraction and data-definition facilities without this performance hit. Protocols and
data types are that solution, and they also offer a high-performance solution to a com-
monly encountered subset of the expression problem by using Java’s extremely fast
single dispatch on type.

In this section, we’ll examine what protocols and data types are and how they can
be used. Keep in mind your design of modus operandi as you work through this.

defprotocol and extend-protocol

The term protocol means the way something is done, often predefined and fol-
lowed by all participating parties. Clojure protocols are analogous to your modus
operandi, and defprotocol is to protocols what def-modus-operandi is to modi
operandi. Similarly, extend-protocol is to protocols what detail-modus-operandi
is to modi operandi.

Listing 9.3 showed the implementation of the expense calculation, and the next
listing shows the same logic implemented using Clojure protocols.

(ns clj-in-act.ch9.expense-protocol
(:import [java.text SimpleDateFormat]
[java.util Calendar]))
(defn new-expense [date-string dollars cents category merchant-name]
(let [calendar-date (Calendar/getInstance)]
(.setTime calendar-date (.parse (SimpleDateFormat. "yyyy-MM-dd")
date-string))
{:date calendar-date
ramount-dollars dollars

Examining the data types side of the expression problem with protocols 235

:amount-cents cents
:category category
:merchant -name merchant-name}))
(defprotocol ExpenseCalculations
(total-cents [e])
(is-category? [e categoryl))
(extend-protocol ExpenseCalculations
clojure.lang.IPersistentMap
(total-cents [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))
(is-category? [e some-category]
(= (:category e) some-category)))
(extend-protocol ExpenseCalculations
com.curry.expenses.Expense
(total-cents [e]
(.amountInCents e))
(is-category? [e some-category]
(= (.getCategory e) some-category)))
(defn category-is [categoryl]
(is-category? % category))
(defn total-amount
([expenses-1ist]
(total-amount (constantly true) expenses-list))
([pred expenses-list]
(->> expenses-list
(filter pred)
(map total-cents)
(apply +))))

The only things that are different from the implementation based on your modus
operandi are that the dependence on the clj-in-act.ch9.modus-operandi name-
space is removed and the calls to def-modus-operandi and detail-modus-operandi
are replaced with calls to defprotocol and extend-protocol. At a conceptual level,
the code in listing 9.5 should make sense. We’ll get into the specifics now.

DEFINING NEW PROTOCOLS
As you might have guessed, new protocols are defined using the defprotocol macro. It
defines a set of named methods, along with their signatures. Here’s the official syntax:

(defprotocol AProtocolName 4__J Optional doc string
"A doc string for AProtocol abstraction"
(bar [this a b] "bar docs")
(baz [this al] [this a bl [this a b c¢] "baz docs"))

‘ Method signatures

The protocol as well as the methods that form it can accept doc strings. A call to
defprotocol results in a bunch of vars being created: one for the protocol itself and
one for each polymorphic function (or method) that’s a part of the protocol. These
functions dispatch on the type of the first argument (and therefore must have at least

236 CHAPTER 9 Protocols, records, and types

one argument), and by convention, the first argument is called this. So from listing 9.5,
the following snippet defines a protocol named ExpenseCalculations:

(defprotocol ExpenseCalculations
(total-cents [e])
(is-category? [e category]l))

You’re defining a set of related methods (total-cents and is-category?) that can
be implemented any number of times by any data type. A call to defprotocol also
generates an underlying Java interface. So, because the previous code exists in the
namespace clj-in-act.ch9.expense-protocol, it will result in a Java interface
called chapter protocols.expense protocol.ExpenseCalculations. The methods
in this interface will be the ones specified in the definition of the protocol, total
_cents and is_category QMARK. The reference to QMARK is thanks to the translated
name of a Clojure function (one that ends with a question mark) into Java.? The fact
that defprotocol generates a Java interface also means that if some other Java code
wants to participate in a protocol, it can implement the generated interface and
proceed as usual.
Now that you’ve defined a protocol, any data type can participate in it.

PARTICIPATING IN PROTOCOLS
Having defined a protocol, let’s see how you can use it. As an example, consider the
call to extend-protocol, also from listing 9.5:

(extend-protocol ExpenseCalculations
com.curry.expenses.Expense
(total-cents [e]

(.amountInCents e))
(is-category? [e some-categoryl]
(= (.getCategory e) some-category)))

This means that the com.curry.expenses.Expense data type will participate in the
ExpenseCalculations protocol, and when either total-cents or is-category? is
called with an instance of this class as the first argument, it will be correctly dispatched
to the previous implementation.

You can also specify more than one participant at a time; you can define the
implementations of the protocol methods for more than a single data type. Here’s
an example:

(extend-protocol ExpenseCalculations
clojure.lang.IPersistentMap
(total-cents [e]

(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))

2 This translation from Clojure names to legal Java names is called munging. Normally, munging is transparently
handled by Clojure, and you don’t need to know about it, but it’s important to keep in mind for two reasons:
Clojure imports understand only Java names, and the filenames for your namespaces should use munged names.

Examining the data types side of the expression problem with protocols 237

(is-category? [e some-category]

(= (:category e) some-category))
com.curry.expenses.Expense
(total-cents [e]

(.amountInCents e))

(is-category? [e some-categoryl
(= (.getCategory e) some-category)))

We’ll now look at another way to specify how data types can participate in protocols.

EXTEND-TYPE MACRO

extend-protocol is a helper macro, defined on top of another convenient macro
named extend-type. It’s sort of the other way of specifying a participant of a protocol,
in that it focuses on the data type. Here’s an example of extend-type in use:

(extend-type com.curry.expenses.Expense
ExpenseCalculations
(total-cents [e]
(.amountInCents e))
(is-category? [e some-category]
(= (.getCategory e) some-category)))

Again, because a single data type can participate in multiple protocols, extend-type
lets you specify any number of protocols. Although extend-protocol and extend-
type make it quite easy to use protocols, they both ultimately resolve to calls to the
extend function.

EXTEND FUNCTION

The extend function lives in Clojure’s core namespace, and it’s the one that does the
work of registering protocol participants and associating the methods with the right
data types. Here’s an example of the extend function in action:

(extend com.curry.expenses.Expense
ExpenseCalculations {
:total-cents (fn [e]
(.amountInCents e))
:is-category? (fn [e some-categoryl
(= (.getCategory e) some-category))})

This might look similar to the code you generated in the implementation of your
modus operandi. For each protocol and data type pair, extend accepts a map that
describes participation of that data type in the protocol. The keys of the map are key-
word versions of the names of the methods, and the values are the function bodies
that contain the implementation for each. The extend function is the most flexible in
terms of building an implementation of a protocol.

Figure 9.2 shows the conceptual flow of defining and using protocols.

We’ve covered protocols and how they’re defined and used. We’ll say another cou-
ple of things about them before moving on to the remaining topics of this chapter.

238

CHAPTER 9 Protocols, records, and types

extend-protocol,
defprotocol - extend-type,
extend

Module
design

Updated

protocol var
protocol var

Java interface Java class

Figure 9.2 Calling defprotocol performs an analogous operation where a var is created
to hold information about the protocol and its implementors. The underlying implementation
will also result in a Java interface that pertains to the protocol being defined. Calls to
extend, extend-type, and extend-protocol will update the var with implementor
details and generate Java classes that implement the protocol.

PROTOCOLS AND NIL

You’ve seen that protocol methods are dispatched based on the class of the first argu-
ment. A natural question arises: What will happen if the first argument to a protocol
method is nil? What is the class of nil?

(class nil)
;=> nil

If you call a protocol method, say total-cents from the expense example with nil,
you’ll get an error complaining that no implementation was found. Luckily, protocols
can be extended on nil:

(extend-protocol ExpenseCalculations nil
(total-cents [e] 0))

After this, calling total-cents with nil will return 0. Similarly, you can implement
the is-category? function to return something appropriate for nil, perhaps false.
Our last stop in this section will be to explore a few functions that help you reflect on
defined protocols.

REFLECTING ON PROTOCOLS
Sometimes it’s useful to programmatically reflect on specific protocols and their extend-
ers. When you wrote your modus operandi, you also wrote some helper functions that

9.3.2

Examining the data types side of the expression problem with protocols 239

let you reflect on implements?, implementors, and full-implementor. Clojure proto-
cols also have functions that work in a similar fashion:

(extends? ExpenseCalculations com.curry.expenses.Expense)
;=> true

(extends? ExpenseCalculations clojure.lang.IPersistentMap)
;=> true

(extends? ExpenseCalculations java.util.Date)

;=> false

Needless to say, the function extends? can be used to check if a particular data type
participates in a given protocol. The next function that’s useful around such querying
is extenders:

(extenders ExpenseCalculations)
;=> (nil com.curry.expenses.Expense clojure.lang.IPersistentMap)

Again, the extenders function lists all the data types that participate in a particular
protocol. The final function of interest is called satisfies? and it works like this:

(satisfies? ExpenseCalculations (com.curry.expenses.Expense. "10-10-2010" 20

95 "books" "amzn"))

;j=> true

(satisfies? ExpenseCalculations (new-expense "10-10-2010" 20 95 "books"
"amzn"))

;j=> true

(satisfies? ExpenseCalculations (java.util.Random.))
;=> false

Note that the satisfies? function works on instances of extenders, not extender data
types themselves. You’ll find this function even more useful once you've seen the
reify macro in action, which we’ll explore in the next section.

We’ve now covered all the topics about protocols that we set out to cover. The next
section is about the other side of this picture; we’ll review a couple of ways to define
data types.

Defining data types with deftype, defrecord, and reify

We started this chapter by considering the expression problem, and as you might
recall, there are two sides to it, namely, data types and the operations on them. So far,
we’ve been looking primarily at the operations side of the situation; in this section
we’ll look at a couple ways to define data types.

The mechanisms we’re going to talk about create underlying classes on the host
platform (namely Java today, but it could be others tomorrow). This means that they
share the same performance as the native version of such data types, as well as the
same polymorphic capabilities supported by the host. We’ll first look at defrecord,
followed by deftype. We’ll close the section with a look at reify.

240 CHAPTER 9 Protocols, records, and types

DEFRECORD
Let’s start with an example of using defrecord:

(defrecord NewExpense [date amount-dollars amount-cents category
merchant -name])

The defrecord macro call defines a named class (in this case chapter protocols
.expense_record.NewExpense) that has the specified set of fields, a class constructor,
and two constructor functions (in this case ->NewExpense and map->NewExpense).
Because this is a proper class on the host environment, the type of class is fully speci-
fied and known, allowing for a high-performance dispatch of fields and methods. Sim-
ilarly, it has a named constructor, similar to other Java classes. Here’s how you’d create
an instance of the NewExpense data type:

Must use munged Java

Printer shows this is classpath: underscores
a class instance ... instead of hyphens
Java
(import 'chapter protocols.expense record.NewExpense) constructor
;=> chapter protocols.expense record.NewExpense on class
(NewExpense. "2010-04-01" 29 95 "gift" "1-800-flowers")
i=> #chapter_protocols.expense_record.NewExpense{:date "2010-04-01",
:amount-dollars 29,
... but it’s :amount-cents 95,
more :category "gift",
idiomatic :merchant-name "1-800-flowers"}
touse > (require '[clj-in-act.ch9.expense-record :as er])
constructor ;=> nil
functions (er/->NewExpense "2010-04-01" 29 95 "gift" "1-800-flowers") <
that are in ;=> #chapter protocols.expense record.NewExpense{:date "2010-04-01",
namespace. :amount-dollars 29, :amount-cents 95, :category "gift",
:merchant-name "1-800-flowers"}
(er/map->NewExpense {:date "2010-04-01", :merchant-name "1-800-flowers",
— :message "April fools!"})
i=> #chapter_protocols.expense_record.NewExpense{:date "2010-04-01",
:amount-dollars nil, :amount-cents nil, :category nil,
:merchant-name "1-800-flowers", :message "April fools!"}
map - >RECORDNAME ->RECORDNAME
constructor accepts constructor accepts
a single map. positional parameters.

Notice a few things about creating a record instance. defrecord creates a real Java class,
which is why you need to use import and a classpath (with Clojure-to-Java name mung-
ing) to access the record and Java instance-creation interop to construct it directly. If
you hadn’t used import, you’d have gotten a ClassNotFoundException when you
tried to invoke the constructor. But defrecord also creates Clojure constructor func-
tions in the same namespace: this is the more common and idiomatic way to create
instances of records from Clojure. The two constructors created are ->RECORDNAME
(where RECORDNAME is the name of the record), which accepts positional parameters

Examining the data types side of the expression problem with protocols 241

identical to those of the Java constructor, and map->RECORDNAME, which accepts a map.
Keys in the map that match record field names become record fields; fields with no
matching keys in the map will get the value nil; any extra keys will be added to the
record in a spillover map.

Now that you’ve come this far, go ahead and change the implementation of the
expense namespace to use this. The following listing shows the new implementation.

(ns clj-in-act.ch9.expense-record
(:import [java.text SimpleDateFormat]
[java.util Calendarl]))
(defrecord NewExpense [date amount-dollars amount-cents
category merchant-name])
(defn new-expense [date-string dollars cents category merchant-name]
(let [calendar-date (Calendar/getInstance)]
(.setTime calendar-date (.parse (SimpleDateFormat. "yyyy-MM-dd")
date-string))
(->NewExpense calendar-date dollars cents category merchant-name)))
(defprotocol ExpenseCalculations
(total-cents [el)
(is-category? [e categoryl))
(extend-type NewExpense
ExpenseCalculations
(total-cents [e]
(-> (:amount-dollars e)
(* 100)
(+ (:amount-cents e))))
(is-category? [e some-category]
(= (:category e) some-category)))
(extend com.curry.expenses.Expense
ExpenseCalculations {
:total-cents (fn [e] (.amountInCents e))
:is-category? (fn [e some-category] (= (.getCategory e)
some-category)) })
(extend-protocol ExpenseCalculations nil
(total-cents [e] 0))
(defn category-is [category]
(is-category? % category))
(defn total-amount
([expenses-list]
(total-amount (constantly true) expenses-list))
([pred expenses-1list]
(->> expenses-list
(filter pred)
(map total-cents)
(apply +))))

Notice the call to extend-type and how you use the name of the newly defined record
NewExpense instead of the previously used, more generic IPersistentMap. This shows
that records can participate fully in protocols and indeed can participate in as many as
needed. By the way, for completeness, it’s worth modifying the test namespace to

242

CHAPTER 9 Protocols, records, and types

depend on the new clj-in-act.ch9.expense-record namespace and checking to
see if all tests pass. They should.

Notice how you can access the fields of the NewExpense instances using keywords.
This is because defrecord creates a class that already implements several interfaces,
including IPersistentMap, IKeywordLookup, and ILookup. In this manner, they work
in the same way as regular Clojure maps, including with respect to destructuring,
metadata, and the use of functions such as assoc and dissoc. A useful point to note is
that records are extensible in that they can accept values for keys that weren’t origi-
nally specified as part of the defrecord call. The only penalty to this is that such keys
have the same performance as Clojure maps. Records also implement the hashCode
and equals methods, to support value-based equality out of the box. A final note is
that the field specification supports type hints. By the way, it’s worth noting here that
records aren’t functions, and so they can’t be used as functions when looking up val-
ues. For instance, you can look up a key inside a Clojure map by using the map as a
function and the key as a parameter, but you can’t do this with records. Here’s an
example to illustrate records’ maplike features:

(defrecord Foo [a b])

;=> user.Foo If you assoc onto a Dissoc a nonfield
’(def foo (->Foo 1 2)) record, you always key, and you still
get a new record get a record.

;=> #'user/foo

(assoc foo :extra-key 3)
;=> #user.Foo{:a 1, :b 2, :extra-key 3} If you dissoc a field key,
(dissoc (assoc foo :extra-key 3) :extra-key) you get an ordinary map.
;=> #user.Foo{:a 1, :b 2}

(dissoc foo :a) Records aren’t

with key added.

i=> {:b 2} callable like maps.
(foo :a)

ClassCastException user.Foo cannot be cast to clojure.lang.IFn user/eval2640
(NO_SOURCE_FILE:1)

Listing 9.6 shows how records can participate in protocols. There’s nearly no change
to the code from the previous implementation in listing 9.5, but records have more
direct support for protocols. They can supply the implementations of protocols inline
with their definition. The following listing shows this version.

(ns clj-in-act.ch9.expense-record-2
(:import [java.text SimpleDateFormat]
[java.util Calendar]))
(defprotocol ExpenseCalculations
(total-cents [el)
(is-category? [e categoryl))
(defrecord NewExpense [date amount-dollars amount-cents
category merchant-name]
ExpenseCalculations
(total-cents [this]

Examining the data types side of the expression problem with protocols 243

(-> amount-dollars
(* 100)
(+ amount-cents)))
(is-category? [this some-category]
(= category some-category)))
(defn new-expense [date-string dollars cents category merchant-name]
(let [calendar-date (Calendar/getInstance)]
(.setTime calendar-date (.parse (SimpleDateFormat. "yyyy-MM-dd")
date-string))
(->NewExpense calendar-date dollars cents category merchant-name)))
(extend com.curry.expenses.Expense
ExpenseCalculations {
:total-cents (fn [e] (.amountInCents e))
:is-category? (fn [e some-category] (= (.getCategory e)
some-category)) })
(extend-protocol ExpenseCalculations nil
(total-cents [e] 0))
(defn category-is [categoryl]
(is-category? % category))
(defn total-amount
([expenses-1ist]
(total-amount (constantly true) expenses-list))
([pred expenses-list]
(->> expenses-list
(filter pred)
(map total-cents)
(apply +))))

The main change is in the following snippet:

(defrecord NewExpense [date amount-dollars amount-cents category
merchant -name]
ExpenseCalculations
(total-cents [this]
(-> amount-dollars
(* 100)
(+ amount-cents)))
(is-category? [this some-category]
(= category some-category)))

Notice that the field names are followed with the protocol name that you want to imple-
ment. The protocol name is followed by the implementations of the protocol methods.
You can similarly follow that with more protocol specifications (the protocol name fol-
lowed by the implementation).

JAVA SUPPORT

What’s more, this isn’t restricted to protocols; you can also specify and implement Java
interfaces. The code would look similar to the previous protocol specification: you’d
specify the interface name followed by the implementation of the interface methods.
Instead of a protocol or an interface, you can also specify Object to override methods
from the Object class. Recall that the first parameter of all protocol methods is the
implementor instance itself, so you must pass the conventionally named this parameter

244

CHAPTER 9 Protocols, records, and types

as before. This means that there will be one more parameter for each interface or
object method when compared to the corresponding definition. Finally, if the method
implementation needs to call recur, the this parameter shouldn’t be passed, because
it will be passed automatically.

With this discussion, we’ve covered records. They can be used in all places where
maps might have been used because they’re faster and also support protocols. Note
that the implementation of protocol methods didn’t result in closures, and when this
functionality is needed, you can use the reify macro. You'll see that shortly, but our
next stop is the deftype macro.

DEFTYPE
When you use defrecord, you get a whole bunch of functionality for free. You get
maplike behavior of using keywords to look up stuff, you get value-based equality
behavior, you get metadata support, and you get serialization. This is usually exactly
what you need when developing application domain data types, such as the expense
data type from the previous few sections.

But there are times when you don’t need any of this; indeed, at times you want to
specify your own implementations for some of these interfaces. It’s for these times
that Clojure also provides the deftype macro:

(deftype Mytype [a bl)

This generates an underlying Java class that looks like the following:

public final class Mytype {
public final Object a;
public final Object b;
public Mytype (Object obj, Object objl) {
a = obj;
b = Objl;

As you can see, the fundamental difference between defrecord and deftype is that
the latter produces a bare-metal class that you can do whatever you want with. The
most common use case of deftype is to build infrastructure abstractions. Examples of
such an abstraction might be a special collection to hold your domain-specific objects
or a custom transaction manager. When you do need such a data type, with the perfor-
mance characteristics of the native host, you can use deftype. In most other cases,
defrecord should suffice.

We’re nearly finished! In the previous section, we briefly mentioned closures. In
the next section, we’ll show how to create anonymous data types and instances of
them using the reify macro.

REIFY
Reification means to bring something into being or to turn something into a concrete
form. The reify macro takes a protocol, which by itself is an abstract set of methods,

9.4

Summary 245

and creates a concrete instance of an anonymous data type that implements that pro-
tocol or interface. It does so with the full power of Clojure’s lexical closures. For
example, you might implement the new-expense function as follows:

(defn new-expense [date-string dollars cents category merchant-name]
(let [calendar-date (Calendar/getInstance)]
(.setTime calendar-date
(.parse (SimpleDateFormat. "yyyy-MM-dd") date-string))
(reify ExpenseCalculations
(total-cents [this]
(-> dollars
(* 100)
(+ cents)))
(is-category? [this some-categoryl
(= category some-category)))))

In a pattern that’s similar to one you’ve seen before, reify accepts one or more proto-
cols or interfaces and their implementations. In this example, reify was passed the
ExpenseCalculations protocol along with the implementations of the total-cents
and is-category? methods. The object returned by reify is a closure; in the case of
new-expense, the lexically bound closure includes the parameters passed to new-
expense, along with the names created in the let form.

You’ve now learned enough about protocols and data types to use them in your
own programs. To round off this chapter, we’ll make a few observations about proto-
cols and compare them to multimethods.

Summary

Protocols were originally introduced to satisfy the need for low-level implementation
techniques that would be fast enough to implement the language itself in, a la Clojure
in Clojure. They also serve to solve 90% of the expression problem cases, where class-
based single dispatch is acceptable. In this way, they’re less powerful than multimethods.

Even with that, protocols have several advantages. Similar to multimethods, they
don’t tie polymorphism to inheritance. They allow grouping of related methods into a
conceptual unit, which makes for clearer, self~-documenting code. Because protocols
generate interfaces from the underlying host, they're able to provide performance
that’s on par with the host itself. Similar to multimethods, they’re an open way of solv-
ing the expression problem. This means that new data types and operations can be
added while making minimum changes to existing code. Similarly, openness is main-
tained with respect to who is allowed to participate in protocols. Any number of data
types can implement a single protocol, and a data type can implement any number of
protocols. Finally, because protocols belong to the namespace they’re defined in,
there’s no danger of name collisions if someone defines a protocol with the same
name that you chose.

As a parting note, it’s worth mentioning that even before the introduction of
defrecord, using maps to store information was the idiomatic way to implement things.

246

CHAPTER 9 Protocols, records, and types

Hiding information behind nongeneric interfaces (such as getters/setters or even
more custom methods) makes such information less reusable by code that wasn’t
designed to access such an API. Maps provide far more generic manipulability, and
records take that one step further by making it perform as fast as the host platform
can make it.

When coupled with protocols, your Clojure code will be built on abstractions. This
will ensure that it’s more flexible and easier to maintain, as well as being easy for other
people to work with. In this manner, protocols realize a huge benefit even beyond
solving the most common case of the expression problem.

In the next chapter you’ll learn how to use Clojure’s built-in testing library and
how to write Clojure using a test-driven method of development.

lest-driven development
and more

This chapter covers

An introduction to unit testing Clojure
Writing test-driven Clojure code
Mocking and stubbing code in Clojure
® |mproving test organization

Test-driven development (TDD) has become something of the norm on most soft-
ware development projects. It’s easy to understand why, because TDD has several
advantages. It allows the programmer to look at code being developed from the
point of view of a consumer, which results in a more useful design when compared
with a library that might be designed in relative isolation. Further, because code
developed using TDD must be testable (by definition), the resulting design is often
better in terms of lower coupling as well. Finally, the suite of tests that results from
the process is a good way to ensure that functionality doesn’t regress in the face of
enhancements and bug fixes.

Clojure has excellent support for unit testing. Further, because Clojure is a Lisp,
it’s also extremely well suited for rapid application development. The read-evaluate-
print loop (REPL) supports this by offering a means to develop code in an incre-
mental manner. In this chapter, as you learn about TDD, you’ll use the REPL for

247

248

10.1

10.1.1

CHAPTER 10 Test-driven development and more

quick experiments and such. As you’ll discover, this combination of TDD and the REPL
makes for a productive development environment. The specific unit-testing library
we’ll explore is called clojure.test, and it comes as a standard part of the Clojure
distribution. Finally, we’ll look into mocking and stubbing needs that you might run
into, and you’ll write code to handle such situations.

Getting started with TDD: Manipulating dates
in strings

In this section, you’ll develop some code in a test-first manner. The first example is a
set of functions that help with strings that represent dates. Specifically, you’ll write
functions to increment and decrement such date strings. Such operations are often
needed in many applications, so this functionality may prove useful as a utility. Although
this example is simple, it illustrates the technique of writing unit tests and then getting
them to pass, while also using the REPL to make the process quicker.

In TDD, you begin by writing a test. Obviously, because no code exists to sup-
port the test, it will fail. Making that failing test pass becomes the immediate goal,
and this process repeats. So the first thing you’ll need is a test, which you’ll start
writing next.

In this simple example, the test you’ll write is for a function that can accept a
string containing a date in a particular format, and you’ll check to see if you can
access its components.

First assertion

In this initial version of the test, you’ll check that the day portion is correct. Consider
the following code (remember to put it in a file called date_operations_spec.clj in a
folder named clj_in_act/ch10 within your source directory):

(ns clj-in-act.chl0.date-operations-spec
(:require [clojure.test :refer :all]
[clj-in-act.chl0.date-operations :refer :alll))
(deftest test-simple-data-parsing
(let [d (date "2009-01-22")]
(is (= (day-from d) 22))))

You're using the clojure.test unit-testing library for Clojure, which began life as an
independent project and was later included as part of the distribution. There are other
open source unit-testing libraries for Clojure (such as Midje (https://github.com/
marick/Midje), expectations (http://jayfields.com/expectations/), and others), but
for most purposes, the basic clojure.test is sufficient. The first evidence that you’re
looking at a unit test is the use of the deftest macro. Here’s the general form of
this macro:

(deftest [name & body])

https://github.com/marick/Midje
https://github.com/marick/Midje
http://jayfields.com/expectations/

Getting started with TDD: Manipulating dates in strings 249

It looks somewhat like a function definition, without any parameters. The body here
represents the code that will run when the unit test is executed. The clojure.test
library provides a couple of assertion macros, the first being is, which was used in the
previous example. You’ll see the use of the other macro in the following paragraphs.

Meanwhile, let’s return to the test. If you try to evaluate the test code at the REPL,
Clojure will complain that it can’t find the c1j-in-act.ch10.date-operations name-
space. The error might look something like the following:

FileNotFoundException Could not locate clj_in act/chl0/date operations
__init.class or clj_in act/chl0/date_operations.clj on classpath:
clojure.lang.RT.load (RT.java:443)

To move past this error, create a new namespace in an appropriately located file.
This namespace has no code in it, so your test code still won’t evaluate, but the error
will be different. It will complain that it’s unable to find the definition of a function
named date:

CompilerException java.lang.RuntimeException: No such var: clj-in-
act.chl0.date-operations/date, compiling: (NO SOURCE PATH:1:1)

Getting past this error is easy; define a date function in your new date-operations
namespace. To begin with, it doesn’t even have to return anything. The same goes for
the day-from function:

(ns clj-in-act.chl0.date-operations)
(defn date [date-string])
(defn day-from [d])

This will cause your test to evaluate successfully, leaving it ready to be run. You can also
do this from the REPL, like so:

(use 'clojure.test)
1=> nil
(run-tests 'clj-in-act.chlO.date-operations-spec)
Testing clj-in-act.chlO0.date-operations-spec
FAIL in (test-simple-data-parsing) (NO_SOURCE FILE:1)
expected: (= (day-from d) 22)
actual: (not (= nil 22))
Ran 1 tests containing 1 assertiomns.
1 failures, 0 errors.
;j=> {:type :summary, :test 1, :pass 0, :fail 1, :error 0}

Now you’re set. You have a failing test that you can work on, and once you have it pass-
ing, you’ll have the basics of what you want. To get this test to pass, you’ll write some
real code in the clj-in-act.chl0.date-operations namespace. One way to imple-
ment this functionality is to use classes from the JDK standard library (there are other
options as well, such as the excellent Joda Time library available as open source).
You’ll stick with the standard library, specifically with the GregorianCalendar and the

250

CHAPTER 10 Test-driven development and more

SimpleDateFormat classes. You can use these to convert strings into dates. You can
experiment with them on the REPL:

(import '(java.text SimpleDateFormat))
;=> java.text.SimpleDateFormat

(def £ (SimpleDateFormat. "yyyy-MM-dd"))
;=> #'user/f

(.parse £ "2010-08-15")

;=> #inst "2010-08-15T05:00:00.000-00:00"

So you know SimpleDateFormat will work, and now you can check out the Gregorian-
Calendar:

(import '(java.util GregorianCalendar))
;=> java.util.GregorianCalendar

(def gc (GregorianCalendar.))

;=> #'user/gc

Now that you have an instance of GregorianCalendar in hand, you can set the time by
parsing a date string and then calling setTime:

(def d (.parse £ "2010-08-15"))
;=> #'user/d

(.setTime gc d)

;j=> nil

Because setTime returns nil, you’re going to have to explicitly pass back the Gregorian-
Calendar object. Once you've performed this experiment, you can write the code,
which ends up looking like this:

(ns clj-in-act.chl0.date-operations

(:import (java.text SimpleDateFormat)

(java.util Calendar GregorianCalendar)))

(defn date [date-string]

(let [f (SimpleDateFormat. "yyyy-MM-dd")

d (.parse f date-string)]
(doto (GregorianCalendar.)
(.setTime d))))

;=> #'clj-in-act.chl0.date-operations/date
(date "2010-08-15")
;=> #inst "2010-08-15T00:00:00.000-05:00"

Also, you have to figure out the implementation of day-from. A look at the API docu-
mentation for GregorianCalendar reveals that the get method is what you need. You
can try it at the REPL:

(import ' (java.util Calendar))
;=> java.util.Calendar

(.get gc Calendar/DAY OF_ MONTH)
;=> 15

10.1.2

Getting started with TDD: Manipulating dates in strings 251

Again, you're all set. The day-£from function can be

(defn day-from [d]
(.get d Calendar/DAY OF MONTH))

The test should pass now. Remember that for the REPL to see the new definitions of
the code in the date-operations namespace, you may need to reload it (using the
:reload option). Here’s the output:

(run-tests 'clj-in-act.chlO.date-operations-spec)

Testing clj-in-act.chl0.date-operations-spec

Ran 1 tests containing 1 assertions.

0 failures, 0 errors.

;j=> {:type :summary, :test 1, :pass 1, :fail 0, :error 0}

Now that you can create date objects (represented by instances of GregorianCalendar)
and can access the day from these objects, you can implement accessors for month
and year. Again, you’ll begin with writing a test.

month-from and year-from
The test for getting the month and year is similar to what you wrote before. You can

include these assertions in the previous test:

(deftest test-simple-data-parsing
(let [d (date "2009-01-22")]

(is (= (month-from d) 1))
(is (= (day-from d) 22))
(is (= (year-from d) 2009))))

This won’t evaluate until you at least define the month-from and year-from functions.
You’ll skip over the empty functions and write the implementation as

(defn month-from [d]

(inc (.get d Calendar/MONTH)))
(defn year-from [d]

(.get d Calendar/YEAR))

With this code in place, the test should pass:

(run-tests 'clj-in-act.chlO.date-operations-spec)

Testing clj-in-act.chlO0.date-operations-spec

Ran 1 tests containing 3 assertiomns.

0 failures, 0 errors.

;j=> {:type :summary, :test 1, :pass 3, :fail 0, :error 0}

Again, you're ready to add more features to your little library. You’ll add an as-string
function that can convert your date objects into the string format.

252

CHAPTER 10 Test-driven development and more

10.1.3 as-string

The test for this function is quite straightforward, because it’s the same format you

began with:

(deftest test-as-string
(let [d (date "2009-01-22")]

(is (= (as-string d) "2009-01-22"))))

Because you have functions to get the day, month, and year from a given date object,

it’s trivial to write a function that constructs a string containing words separated by

dashes. Here’s the implementation, which will compile and run after you include

clojure.string in the namespace via a require clause:

(require '[clojure.string :as str])
(defn as-string [datel
(let [y (year-from date)
m (month-from date)
d (day-from date)]
(str/join "-" [y m dl)))

You can confirm that this works by running it at the REPL:

(def d (clj-in-act.chlO0.date-operations/date "2010-12-25"))

;=> #'user/d
(as-string d)
;=> "2010-12-25"

So that works, which means your test should pass. Running the test now gives the fol-

lowing output:

(run-tests 'clj-in-act.chl0.date-operations-spec)
Testing clj-in-act.chl0.date-operations-spec
FAIL in (test-as-string) (NO SOURCE FILE:1)
expected: (= (as-string d) "2009-01-22")

actual: (not (= "2009-1-22" "2009-01-22"))

Ran 2 tests containing 4 assertions.
1 failures, 0 errors.

;j=> {:type :summary, :test 2, :pass 3,

:fail 1, :error 0}

The test failed! The problem is that instead of returning "2009-01-22", your as-string

function returns "2009-1-22", because the various parts of the date are returned as

numbers without leading zeroes even when they consist of only a single digit. You’ll

either have to change your test (which is fine, depending on the problem at hand) or

pad such numbers to get your test to pass. For this example, you’ll do the latter:

(defn pad [n]
(if (< n 10) (str "0" n) (str n)))
(defn as-string [datel]
(let [y (year-from date)
m (pad (month-from date))
d (pad (day-from date))]
(str/join "-" [y m d])))

10.1.4

Getting started with TDD: Manipulating dates in strings

Running the test now should show a better response:

(run-tests 'clj-in-act.chlO.date-operations-spec)

Testing clj-in-act.chlO0.date-operations-spec

Ran 2 tests containing 4 assertiomns.

0 failures, 0 errors.

;j=> {:type :summary, :test 2, :pass 4, :fail 0, :error 0}

253

So, you now have the ability to create date objects from strings, get at parts of the
dates, and also convert the date objects into strings. You can either continue to add

features or take a breather to refactor your code a little.

Incrementing and decrementing

Because you’re just getting started, we’ll postpone refactoring until after adding one
more feature: adding functionality to advance and turn back dates. You’ll start with

addition, and then you’ll write a test:

(deftest test-incrementing-date
(let [d (date "2009-10-31")
n-day (increment-day d)]
(is (= (as-string n-day) "2009-11-01"))))

This test will fail, citing the inability to find the definition of increment -day. You can
implement this function using the add method on the GregorianCalendar class, which

you can check on the REPL:

(def d (date "2009-10-31"))

;=> #'user/d

(.add d Calendar/DAY OF MONTH 1)
1=> nil

(as-string d)

;j=> "2009-11-01"

So that works quite nicely, and you can convert this into a function, as follows:

(defn increment-day [d]
(doto d
(.add Calendar/DAY OF MONTH 1)))

Now, you can add a couple more assertions to ensure you can add not only days but

also months and years. The modified test looks like this:

(deftest test-incrementing-date
(let [d (date "2009-10-31")
n-day (increment-day d)
n-month (increment-month d)
n-year (increment-year d)]
(is (= (as-string n-day) "2009-11-01"))
(as-string n-month) "2009-11-30"))

(=
(= (as-string n-year) "2010-10-31"))))

254

CHAPTER 10 Test-driven development and more

The code to satisfy this test is simple, now that you already have increment-day:

(defn increment-month [d]
(doto d
(.add Calendar/MONTH 1)))
(defn increment-year [d]
(doto d
(.add Calendar/YEAR 1)))

Running this results in the following output:

(run-tests 'clj-in-act.chl0.date-operations-spec)

Testing clj-in-act.chlO0.date-operations-spec

FAIL in (test-incrementing-date) (NO_SOURCE_FILE:1l)

expected: (= (as-string n-day) "2009-11-01")
actual: (not (= "2010-12-01" "2009-11-01"))

FAIL in (test-incrementing-date) (NO_SOURCE_FILE:1l)

expected: (= (as-string n-month) "2009-11-30")
actual: (not (= "2010-12-01" "2009-11-30"))

FAIL in (test-incrementing-date) (NO_SOURCE_FILE:1l)

expected: (= (as-string n-year) "2010-10-31")
actual: (not (= "2010-12-01" "2010-10-31"))

Ran 4 tests containing 8 assertions.

3 failures, 0 errors.

;j=> {:type :summary, :test 4, :pass 5, :fail 3, :error 0}

All the tests failed! Even the one that was passing earlier (incrementing the date by
a day) is now failing. Looking closely, all three failures are because the incremented
date seems to be "2010-12-01". It appears that "2009-10-31" was incremented
first by a day, then by a month, and then by a year! You’ve been bitten by the most-
Java-objects-are-not-immutable problem. Because d is a mutable object, and you’re
calling increment-day, increment-month, and increment-year on it, you're accu-
mulating the mutations, resulting in a final date of "2010-12-01". (As a side note,
this also illustrates how easy it is to get used to Clojure’s immutability and then to
expect everything to behave like Clojure’s core data structures. Within a few days of
using Clojure, you’ll begin to wonder why you ever thought mutable objects were a
good ideal)

To address this problem, you’ll return a new date from each mutator function. The
clone method in Java does this, and you can use it in your new definitions:

(defn increment-day [d]
(doto (.clone d)
(.add Calendar/DAY OF MONTH 1)))
(defn increment-month [d]
(doto (.clone d)
(.add Calendar/MONTH 1)))
(defn increment-year [d]
(doto (.clone d)
(.add Calendar/YEAR 1)))

10.1.5

Getting started with TDD: Manipulating dates in strings 255

With this change, all the tests pass, allowing us to now tackle decrementing. Again,
you’ll start with a test:

(deftest test-decrementing-date
(let [d (date "2009-11-01")
n-day (decrement-day d)
n-month (decrement-month d)
n-year (decrement-year d)]
(is (= (as-string n-day) "2009-10-31"))
(= (as-string n-month) "2009-10-01"))
(is (= (as-string n-year) "2008-11-01"))))

To get this test to pass, you can go with the same structure of functions that did the
incrementing. The code might look like the following:
(defn decrement-day [d]
(doto (.clone d)
(.add Calendar/DAY OF MONTH -1)))
(defn decrement-month [d]
(doto (.clone d)
(.add Calendar/MONTH -1)))
(defn decrement-year [d]
(doto (.clone d)
(.add Calendar/YEAR -1)))

Each function calls an appropriate Java method, and this passes all the tests. You now
have code that works and a library that can accept date strings and return dates as
strings. It can also increment and decrement dates by days, months, and years. But the
code isn’t quite optimal, so you’re now going to improve it.

Refactor mercilessly

Extreme programming (XP) is an Agile methodology that espouses several specific
guidelines. One of them is to “refactor mercilessly.” It means that you should continu-
ously strive to make code (and design) simpler by removing clutter and needless com-
plexity. An important part of achieving such simplicity is to remove duplication. You’ll
do that with the code you’ve written so far.

Before you start, it’s pertinent to make an observation. There’s one major require-
ment to any sort of refactoring: for it to be safe, there needs to be a set of tests that can
verify that nothing broke because of the refactoring. This is another benefit of writing
tests (and TDD in general). The tests from the previous section will serve this purpose.

You’'ll begin refactoring by addressing the duplication in the increment /decrement
functions. Here’s a rewrite of those functions:

(defn date-operator [operation field]
(fn [d]
(doto (.clone d)
(.add field (operation 1)))))
(def increment-day (date-operator + Calendar/DAY OF MONTH))
(def increment-month (date-operator + Calendar/MONTH))

256

10.2

10.2.1

CHAPTER 10 Test-driven development and more

def increment-year (date-operator + Calendar/YEAR))

def decrement-day (date-operator - Calendar/DAY OF MONTH))
def decrement-month (date-operator - Calendar/MONTH))

def decrement-year (date-operator - Calendar/YEAR))

After replacing all six of the old functions with this code, the tests still pass. You've
removed the duplication from the previous implementation and also made the code
more declarative: the job of each of the six functions is clearer with this style. The ben-
efit may seem small in this example, but for more complex code, it can be a major
boost in readability, understandability, and maintainability. This refactored version
can be further reduced via some clever use of convention, but it may be overkill for
this particular task. As it stands, you’ve reduced the number of lines from 18 to 10,
showing that the old implementation was a good 80% larger than this new one.

Imagine a similar refactoring being applied to the month-from, day-from, and
year-from functions. What might that look like?

This section showed how to use the built-in Clojure unit-testing library called
clojure.test. As you saw through the course of building the example, using the
REPL is a critical element to writing Clojure code. You can use the REPL to quickly
check how things work and then write code once you understand the APIs. It’s great
for such short experiments and allows for incrementally building up code for larger,
more complex functions. When a unit-testing library is used alongside the REPL, the
combination can result in an ultrafast development cycle while keeping quality high.
In the next section, you’ll see how you can write a simple mocking and stubbing
library to make your unit testing even more effective.

Improving tests through mocking and stubbing

Unit testing is testing at a unit level, which in the case of Clojure is the function. Func-
tions are often composed of other functions, and there are times when testing such
upper-level functions that it’s useful to mock out calls to certain underlying functions.
Mocking functions is a useful technique (often used during unit testing) where a par-
ticular function is replaced with one that doesn’t do anything. This allows you to focus
only on those parts of the code where the unit test is being targeted.

At other times, it’s useful to stub the calling of a function, so instead of doing what
it’s implemented to do, the stubbed function returns canned data.

You’ll see examples of both of these in this section. You’ll also write a simple library
to handle mocking and stubbing functions in this manner. Clojure, being the dynamic
functional language that it is, makes this extremely easy to do.

Example: Expense finders

In this example, you’ll write a few functions to load certain expense records from a
data store and then filter them based on some criteria (such as greater than a particu-
lar amount). You might do this as part of an expense report builder, for instance.

Improving tests through mocking and stubbing 257

Because you’re dealing with money, you’ll also throw in a requirement that your func-
tions must log to an audit log.

Also, the focus of this section isn’t the TDD that you saw in the previous section.
This section will focus on the need to stub calls to certain functions. The following list-
ing shows the code you’re trying to test.

(ns clj-in-act.chl0.expense-finders
(:require [clojure.string :as strl))

(defn log-call [id & args]
(println "Audit - called" id "with:" (str/join ", " args))
;;do logging to some audit data-store

)

(defn fetch-all-expenses [username start-date end-date]
(log-call "fetch-all" username start-date end-date)
;find in data-store, return list of expense maps

)

(defn expenses-greater-than [expenses threshold]
(log-call "expenses-greater-than" threshold)
(filter #(> (:amount %) threshold) expenses))

(defn fetch-expenses-greater-than [username start-date end-date threshold]
(let [all (fetch-all-expenses username start-date end-date)]

(expenses-greater-than all threshold)))

Here again, expense records are represented as Clojure maps. The 1log-call function
presumably logs calls to some kind of an audit database. The two fetch functions both
depend on loading expenses from some sort of data store. To write a test for, say, the
fetch-expenses-greater-than function, you’ll need to populate the data store to
ensure it’s loaded from the test via the fetch-all-expenses call. In case any test alters
the data, you must clean it up so subsequent runs of the tests also work.

This is a lot of trouble. Moreover, it couples your tests to the data store and the
data in it. Presumably, as part of a real-world application, you’d test the persistence of
data to and from the data store elsewhere, so having to deal with hitting the data store
in this test is a distraction and plain unnecessary. It would be nice if you could stub the
call and return canned data. You’ll implement this stubbing functionality next. Fur-
ther, you’ll look at dealing with another distraction, the 1og-call function, in the fol-
lowing section.

10.2.2 Stubbing

In your test for fetch-expenses-greater-than, it would be nice if you could do
the following:

(let [filtered (fetch-expenses-greater-than "" "" "" 15.0)]
(is (count filtered) 2))

(=
(is (= (:amount (first filtered)) 20.0))
(is (= (:amount (last filtered)) 30.0)))

258

CHAPTER 10 Test-driven development and more

You're passing blank strings to fetch-expenses-greater-than because you don’t
care what the values are (you could have passed anything). Inside the body of fetch-
expenses-greater-than, they're used only as arguments to fetch-all-expenses, and
you want to stub the call to this latter function (the one parameter that you do pass
correctly is the last one, with a value of 15.0). What you’d also like is for the stubbed
call to return canned data, which you might define as follows:

(def all-expenses [{:amount 10.0 :date "2010-02-28"}
{:amount 20.0 :date "2010-02-25"}
{:amount 30.0 :date "2010-02-21"}])

So, the question is how do you express the requirement for these two things: the call
to fetch-all-expenses is faked out (stubbed), and it returns all-expenses?

STUBBING MACRO

To make the process of stubbing functions feel as natural as possible, you’ll create a
new construct for your tests and give it the original name stubbing. After you have it
all implemented, you’ll be able to say something like this:

(deftest test-fetch-expenses-greater-than
(stubbing [fetch-all-expenses all-expenses]

(let [filtered (fetch-expenses-greater-than "" "" "" 15.0)]
(is (= (count filtered) 2))
(is (= (:amount (first filtered)) 20.0))
(is (= (:amount (last filtered)) 30.0)))))

The general form of the stubbing macro is as follows:

(stubbing [function-namel stubbed-return-valuel
function-name2 stubbed-return-value2 ..]
code-body)

This reads a little like the let and binding forms, and whenever you add such con-
structs to your code, it makes sense to make them look and feel like one of the built-in
features of Clojure to keep things easy for others to understand. Now let’s see how you
might implement it.

IMPLEMENTING STUBBING

Clojure makes implementing this quite easy. Because it’s a functional language, you
can easily create a dummy function on the fly, one that accepts an arbitrary number of
parameters and returns whatever you specify. Next, because function definitions are
held in vars, you can then use the binding form to set them to your newly constructed
stub functions. Here’s the implementation:

(ns clj-in-act.chl0.stubbing)
(defmacro stubbing [stub-forms & body]
(let [stub-pairs (partition 2 stub-forms)
returns (map last stub-pairs)
stub-fns (map #(list 'constantly %) returns)
real-fns (map first stub-pairs)]

Improving tests through mocking and stubbing 259

" (with-redefs [~@(interleave real-fns stub-fns)]
~@body)))

Considering that many languages have large, complex libraries for stubbing functions
and methods, this code is almost disappointingly short!

Before we look at a sample expansion of this macro, let’s look at an example of two
functions, calc-x and calc-y, being called from some client code:

(defn calc-x [x1 x2]
(* x1 x2))
(defn calc-y [yl y2]
(/ y2 y1))
(defn some-client []
(println (calc-x 2 3) (calc-y 3 4)))

Let’s see how some-client behaves under normal conditions:

(some-client)
6 4/3
;=> nil

And here’s how it behaves using the new stubbing macro:

(stubbing [calc-x 1
calc-y 2]
(some-client))
12
1=> nil

So now that we’ve confirmed that this works as expected, let’s look at how it does so:

(macroexpand-1' (stubbing [calc-x 1 calc-y 2]
(some-client)))
;=> (clojure.core/with-redefs [calc-x (constantly 1)
calc-y (constantly 2)]
(some-client))

The constantly function does the job well, but to make things easier for you later on,
you’ll introduce a function called stub-fn. It’s a simple higher-order function that
accepts a value and returns a function that returns that value no matter what arguments
it’s called with. Hence, it’s equivalent to constantly. The rewritten code is shown here:

(defn stub-fn [return-valuel
(fn [& args]
return-value))
(defmacro stubbing [stub-forms & body]
(let [stub-pairs (partition 2 stub-forms)
returns (map last stub-pairs)
stub-fns (map #(list “stub-fn %) returns)
real-fns (map first stub-pairs)]
“(with-redefs [~@(interleave real-fns stub-fns)]
~@body)))

Backtick quote

on stub-£n is so
expanded symbol is
namespace qualified

260

10.2.3

CHAPTER 10 Test-driven development and more

This extra layer of indirection will allow you to introduce another desirable feature into
this little library (if you can even call it that!)—mocking, the focus of the next section.

Mocking

Let’s begin by going back to what you were doing when you started the stubbing jour-
ney. You wrote a test for fetch-expenses-greater-than, a function that calls expenses-
greater-than. This function does two things: it logs to the audit log, and then it filters
out the expenses based on the threshold parameter. You should be unit testing this
lower-level function as well, so let’s look at the following test:

(ns clj-in-act.chl0.expense-finders-spec
(:require [clj-in-act.chl0.expense-finders :refer :all]
[clojure.test :refer :alll))

(deftest test-filter-greater-than
(let [fetched [{:amount 10.0 :date "2010-02-28"}
ramount 20.0 :date "2010—02—25“}
}
5

{:amount 30.0 :date "2010-02-21"}]
(

filtered (expenses-greater-than fetched 15.0)]
(is (= (count filtered) 2))
(is (= (:amount (first filtered)) 20.0)
(is (= (:amount (last filtered)) 30.0))))

Running the test gives the following output:

(run-tests 'clj-in-act.chl0.expense-finders-spec)

Testing clj-in-act.chl0.expense-finders-spec

Audit - called expenses-greater-than with: 15.0

Ran 1 tests containing 3 assertions.

0 failures, 0 errors.

;j=> {:type :summary, :test 1, :pass 3, :fail 0, :error 0}

It works, and the test passes. The trouble is that the audit function also runs as part of
the test, as can be seen from the text Audit - called expenses-greater-than with:
15.0 that was printed by the log-call function. In the present case, all it does is print
some text, but in the real world, it could do something useful—perhaps write to a
database or send a message on a queue.

Ultimately, it causes the tests to be dependent on an external system such as a data-
base server or a message bus. It makes the tests less isolated, and it detracts from the
unit test itself, which is trying to check whether the filtering works correctly.

One solution is to not test at this level at all but to write an even lower-level func-
tion that tests only the filtering. But you’d like to test at least at the level that clients of
the code will work at, so you need a different solution. One approach is to add code to
the log-call function so that it doesn’t do anything when running in test mode. But
that adds unnecessary code to functions that will run in production, and it also clut-
ters the code. In more complex cases, it will add noise that will detract from easily
understanding what the function does.

10.24

Improving tests through mocking and stubbing 261

Luckily, you can easily fix this problem in Clojure by writing a simple mocking
library.

Mocks versus stubs

A mock is similar to a stub because the original function doesn’t get called when a func-
tion is mocked out. A stub returns a canned value that was set up when the stub was set
up. A mock records the fact that it was called, with a specific set of arguments. Later
on, the developer can programmatically verify if the mocked function was called, how
many times it was called, and with what arguments.

CREATING MOCKS WITH STUBS

Now that you have a separate function called stub-fn, you can modify this to add
mocking capabilities. You’ll begin by creating an atom called mock-calls that will
hold information about the various mocked functions that were called:

(def mock-calls (atom {}))

Now, you’ll modify stub-£n to use this atom:

(defn stub-fn [the-function return-value]
(swap! mock-calls assoc the-function [])
(fn [& args]
(swap! mock-calls update-in [the-function] conj args)
return-value))

When stub-fn is called, an empty vector is stored in the atom against the function
being stubbed. Later, when the stub is called, it records the call in the atom (as shown
in chapter 6) along with the arguments it was called with. It then returns the return-
value it was created with, thereby working as before in that respect.

Now that you’ve changed the way stub-£fn works, you have to also slightly refactor
the stubbing macro for it to stay compatible:

(defmacro stubbing [stub-forms & body]
(let [stub-pairs (partition 2 stub-forms)
real-fns (map first stub-pairs)
returns (map last stub-pairs)
stub-fns (map #(list “stub-fn %1 %2) real-fns returns)]
" (with-redefs [~@(interleave real-fns stub-fns)]
~@body)))

Okay, now you’ve laid the basic foundation on which to implement the mocking fea-
tures. Because a mock is similar to a stub, you can use stub-fn to create a new one.
You don’t care about a return value, so you’ll use nil:

(defn mock-fn [the-function]
(stub-fn the-function nil))

262 CHAPTER 10 Test-driven development and more

Now for some syntactic sugar. You'll create a new macro called mocking, which will
behave similar to stubbing, except that it will accept any number of functions that
need to be mocked:

(defmacro mocking [fn-names & body]

(let [mocks (map #(list “mock-fn (keyword %)) fn-names)]
“(with-redefs [~@(interleave fn-names mocks)]
~@body)))

Now that you have the basics ready, you can rewrite your test:

(deftest test-filter-greater-than

(mocking [log-call] all-expenses
(let [filtered (expenses-greater-than all-expenses 15.0)] defined in
(is (= (count filtered) 2)) section 10.2.2
(is (= (:amount (first filtered)) 20.0)
(is (= (:amount (last filtered)) 30.0)))))

When you run this test, it won’t execute the log-call function, and the test is now
independent of the whole auditlogging component. As noted earlier, the difference
between mocking and stubbing so far is that you don’t need to provide a return value
when using mocking.

Although you don’t want the log-call function to run as is, it may be important
to verify that the code under test calls a function by that name. Perhaps such calls
are part of some security protocol in the overall application. It’s quite easy for you to
verify this, because you’re recording all calls to your mocked functions in the mock-
calls atom.

VERIFYING MOCKED CALLS
The first construct that you’ll provide to verify mocked function use will confirm the
number of times they were called. Here it is:

(defmacro verify-call-times-for [fn-name number]
“(is (= ~number (count (@mock-calls ~(keyword fn-name))))))

This makes it easy to see if a mocked function was called a specific number of times.
Another way to verify the mocked calls would be to ensure they were called with spe-
cific arguments. Because you’re recording that information as well, it’s quite easy to
provide verification functions to do this:

(defmacro verify-first-call-args-for [fn-name & args]
“(is (= '~args (first (@mock-calls ~(keyword fn-name))))))

Finally, because a mocked function may be called multiple times by the code under
test, here’s a macro to verity any of those calls:

(defmacro verify-nth-call-args-for [n fn-name & args]
“(is (= '~args (nth (@mock-calls ~(keyword fn-name)) (dec ~n)))))

Improving tests through mocking and stubbing 263

Let’s look at these verification mechanisms in action:

(deftest test-filter-greater-than
(mocking [log-calll
(let [filtered (expenses-greater-than all-expenses 15.0)]

(is (= (count filtered) 2))
(is (= (:amount (first filtered)) 20.0))
(is (= (:amount (last filtered)) 30.0)))

(verify-call-times-for log-call 1)
(verify-first-call-args-for log-call "expenses-greater-than" 15.0)
(verify-nth-call-args-for 1 log-call "expenses-greater-than" 15.0)))

What you now have going is a way to mock any function so that it doesn’t get called
with its regular implementation. Instead, a dummy function is called that returns nil
and lets the developer also verify that the calls were made and with particular argu-
ments. This makes testing code with various types of dependencies on external
resource much easier. The syntax is also not so onerous, making the tests easy to write
and read.

You can now also refactor verify-first-call-args-for in terms of verify-nth-
call-args-for as follows:

(defmacro verify-first-call-args-for [fn-name & args]
“(verify-nth-call-args-for 1 ~fn-name ~@args))

So that’s the bulk of it! Listing 10.2 shows the complete mocking and stubbing macro
implementation. It allows functions to be dynamically mocked out or stubbed, depend-
ing on the requirement. It also provides a simple syntactic layer in the form of the
mocking and stubbing macros, as shown previously.

(ns clj-in-act.chl0.mock-stub
(:use clojure.test))
(def mock-calls (atom {}))
(defn stub-fn [the-function return-value]
(swap! mock-calls assoc the-function [])
(fn [& args]
(swap! mock-calls update-in [the-function] conj args)
return-value))
(defn mock-fn [the-function]
(stub-£fn the-function nil))
(defmacro verify-call-times-for [fn-name number]

“(is (= ~number (count (@mock-calls ~(keyword fn-name))))))
(defmacro verify-nth-call-args-for [n fn-name & args]
“(is (= '~args (nth (@mock-calls ~(keyword fn-name)) (dec ~n)))))

(defmacro verify-first-call-args-for [fn-name & args]
“(verify-nth-call-args-for 1 ~fn-name ~@args))
(defmacro mocking [fn-names & body]
(let [mocks (map #(list “mock-fn (keyword %)) fn-names)]
“(with-redefs [~@(interleave fn-names mocks)]
~@body)))

264

10.2.5

CHAPTER 10 Test-driven development and more

(defmacro stubbing [stub-forms & body]
(let [stub-pairs (partition 2 stub-forms)
real-fns (map first stub-pairs)
returns (map last stub-pairs)
stub-fns (map #(list “stub-fn %1 %2) real-fns returns)]
" (with-redefs [~@(interleave real-fns stub-fns)]
~@body)))

That’s not a lot of code: under 30 lines. But it’s sufficient for your purposes and
indeed as a basis to add more complex functionality. We’ll now look at a couple more
things before closing this section.

Managing stubbing and mocking state

As the tests are set up and run, you build up state for things like canned return values
and metrics around what was called with what arguments. In this section, we’ll look at
managing this state.

CLEARING RECORDED CALLS

After a test run such as the previous one, the mock-calls atom contains all the
recorded calls to mocked functions. The verification macros you create work against
this to ensure that your mocks were called the way you expected. When all is said and
done, though, the data that remains is useless. You can add a function to clear out the
recorded calls:

(defn clear-calls []
(reset! mock-calls {}))

In case you wondered why running the same test multiple times doesn’t cause an
accumulation in the mock-calls atom, it’'s because the call to stub-fn resets the
entry for that function. Further, this global state will cause problems if you happen
to run tests in parallel, because the recording will no longer correspond to a single
piece of code under test. The atom will, instead, contain a mishmash of all calls to
various mocks from all the tests. This isn’t what’s intended, so you can fix this by
making the state local.

REMOVING GLOBAL STATE

By removing the global mock-calls atom, you’ll be able to improve the ability of tests
that use mocking to run in parallel. The first thing you’ll do is make the global bind-
ing for mock-calls dynamic:

“Earmuffs” (surrounding asterisks)

(def *:dynamic *mock-calls¥) mark dynamic vars by convention.

Next, for things to continue to work as they did, you have to reestablish the binding at
some point. You’ll create a new construct called defmocktest, which will be used

Organizing tests 265

instead of deftest. Its only job is to create a binding for mock calls before delegating
back to good-old deftest:

(defmacro defmocktest [test-name & bodyl
" (deftest ~test-name
(binding [*mock-calls* (atom {})]
(do ~@body))))

After this, your previously defined tests would need to be redefined using defmocktest:

(defmocktest test-fetch-expenses-greater-than
(stubbing [fetch-all-expenses all-expenses]

(let [filtered (fetch-expenses-greater-than "" "" "" 15.0)]
(is (= (count filtered) 2))
(is (= (:amount (first filtered)) 20.0))
(is (= (:amount (last filtered)) 30.0)))))

And here’s the other one:

(defmocktest test-filter-greater-than
(mocking [log-calll
(let [filtered (expenses-greater-than all-expenses 15.0)]

(is (= (count filtered) 2))
(is (= (:amount (first filtered)) 20.0))
(is (= (:amount (last filtered)) 30.0)))

(verify-call-times-for log-call 1)
(verify-first-call-args-for log-call "expenses-greater-than" 15.0)))

The trade-off is that you have to include the calls to your verify macros inside the
scope of the call to defmocktest. This is because the mock calls are recorded inside
the atom bound by the binding created by the defmocktest macro, and outside such
scope there’s nothing bound to *mock-calls*.

You’ve completed what you set out to do: you started by exploring the clojure
.test library and then added functionality to allow simple stubbing and mocking of
functions. Our final stop will be to look at another couple of features of clojure.test.

10.3 Organizing tests

A couple other constructs that are part of the clojure.test unit-testing library are
worth knowing about. They help with organizing asserts inside the body of a test func-
tion. Although it’s usually better to keep the number of asserts in each test to the low-
est possible number, sometimes it’s logical to add asserts to existing tests rather than
add new tests.

When a test does have several assertions, it often becomes more difficult to under-
stand and maintain. When an assertion fails, it isn’t always clear what the specific fail-
ure is and what specific functionality is breaking. In this section, we’ll look at two
macros that can help you manage assertions: the testing macro and the are macro.

266

10.3.1

10.3.2

CHAPTER 10 Test-driven development and more

The testing macro documents groups of test assertions. The are macro does two
things: it removes duplication when several assertions using is are used with minor
variations, and it groups such assertions together. We’ll look at an example of the
testing macro in action first.

The testing macro

Let’s revisit the test-filter-greater-than test from the previous section. There are
two distinct sets of things you’'re checking for here: first that the filtering itself works
and second that the call to log-call happens correctly. You’ll use the testing macro
to group these according to those goals:

(defmocktest test-filter-greater-than
(mocking [log-calll
(let [filtered (expenses-greater-than all-expenses 15.0)]
(testing "the filtering itself works as expected"

(is (= (count filtered) 2))
(is (= (:amount (first filtered)) 20.0))
(is (= (:amount (last filtered)) 30.0))))

(testing "Auditing via log-call works correctly"
(verify-call-times-for log-call 1)
(verify-first-call-args-for log-call "expenses-greater-than" 15.0))))

This code deliberately changed the number of times you expect 1log-call to be called
to 2, so you can see how things look when this test fails:

(test-filter-greater-than)
FAIL in (test-filter-greater-than) (NO SOURCE FILE:1)
Auditing via log-call works correctly
expected: (clojure.core/= 2 (clojure.core/count ((clojure.core/deref
clj-in-act.chl0.mock-stub2/*mock-calls*) :log-call)))
actual: (not (clojure.core/= 2 1))

As you can see, now when anything within a group of assertions fails, the testing
string is printed along with the failure. It gives immediate feedback about what the
problem is, and it also makes reading and understanding the test much easier.

Now let’s look at the are macro.

The are macro

We’ll now look at the are macro, which is an additional construct to group assertions
with and one that also helps remove unnecessary duplication. Imagine that you had to
create a function to uppercase a given string:

(deftest test-to-upcase
(is (= "RATHORE" (to-upper "rathore")))
(is (= "1" (to-upper 1)))
(is (= "AMIT" (to-upper "amit"))))

10.4

Summary 267

Here’s a function that will satisfy this test:

(defn to-upper [s]
(.toUpperCase (str s)))

You can remove the duplication in this test by using the are macro:

(deftest test-to-upcase

(are [1 ul (= u (to-upper 1))
"RATHORE" "rathore"

n 1 n n 1 n

"AMIT" “amit“))

Using the are macro combines several forms into a single form. When any of them
fail, the failure is reported as a single failure. This is why it should be used to group
related assertions, not as a means to remove duplication.

Summary

In this chapter, we looked at test-driven development in Clojure. As you saw, TDD in a
language such as Clojure can work as well as it does in other dynamic languages. In
fact, when combined with the REPL, it gets an additional boost of productivity. The
typical process is this: you write a failing unit test and follow that up with trying out
various implementation ideas at the REPL. When it becomes clear what approach to
take, you test various implementations quickly at the REPL. Finally, you copy the code
over to the test files and add additional assertions and tests.

You then wrote some simple code to stub functions, and then you added function-
ality to mock functions and verify the calls made to them. Clojure made it extremely
easy—and the complete code for this clocked in at fewer than 30 lines. Although it
probably didn’t satisfy every requirement from a stubbing and mocking library, it served
your purposes well and it can be used as the basis for something more complex. It cer-
tainly showed how easily you can implement seemingly complex things in Clojure.

Overall, this chapter demonstrated that using the REPL and test-driven develop-
ment significantly amplifies the natural productivity boost that comes from using a
modern and functional Lisp.

In this chapter, you created new “syntax” using macros to simplify and clarify mock-
ing and stubbing in your testing code. In the next and final chapter, you’ll learn more
advanced macro techniques and how to use them to construct your own domain-
specific languages.

More macros and DSLs

This chapter covers

® Anaphoric macros

m Shifting computation to compile time
® Macro-generating macros

®m Designing, writing, and optimizing domain-
specific languages in Clojure

This final chapter is about what many consider the most powerful feature of Clo-
jure. John McCarthy, the inventor of the Lisp programming language, once said
that Lisp is a local maximum in the space of programming languages.' Clojure
macros make it possible to do arbitrary code transformations of Clojure code, using
Clojure itself. No programming language outside the Lisp family can do this in
such a simple way. This is possible because code is data.

You've seen a lot of macros in the course of this book, including in chapter 7,
which served as an introduction to the topic. In this section, you’re going to see a
lot more but with two new points of focus: the advanced uses of macros and the

! History of Lisp (paper presented at the first History of Programming Languages conference, June 1-3,
1978), http://www-formal.stanford.edu/jmc/history/lisp/lisp.html.

268

http://www-formal.stanford.edu/jmc/history/lisp/lisp.html

11.1

A quick review of macros 269

conscious design of a simple domain-specific language. Mastering these topics will let
you design elegant abstractions for even the most demanding of problem domains.

A quick review of macros

You’ve already used macros quite a bit, but as a refresher here you’ll write a little
macro to remind you what macros make possible. You’ve used Clojure’s let macro
several times so far. Although let itself is a macro, it’s implemented in terms of the
let* special form, which sets up lexical scope for the symbols named in the binding
form. You’ll now implement a subset of the functionality of let via a macro that gen-
erates function calls. This is what you’d like to do:

(my-let [x 10
Yy X
z (+ x y)]
(* xy z))
;=> 2000

This should return 2000, because x is 10, y is also 10, and z is 20. Here’s the imple-
mentation:

(defmacro single-arg-fn [binding-form & body]
“((fn [~ (first binding-form)] ~@body) ~ (second binding-form)))

(defmacro my-let [lettings & bodyl
(if (empty? lettings)
~ (do ~@body)
" (single-arg-fn ~(take 2 lettings)
(my-let ~(drop 2 lettings) ~@body))))

In case you'd like to refresh your memory on how macros work, please refer back to
chapter 7. Although the preceding code is a limited implementation, you still get all
the advantages that arise from using functions underneath the covers. For instance,
you can do the following:

(my-let [[a b] [2 5]
{:keys [x y]1} {:x (* a b) :y 20}
z (+ x y)]
(println "a,b,x,y,z:" a b x y z)
(* xy z))

a,b,x,y,z: 2 5 10 20 30

;=> 6000

Notice here that all destructuring forms just work, because underneath the covers,
regular functions are at work. Specifically, you're taking each my-1let binding and set-
ting it up as the single argument to an anonymous unary function. You’re essentially
converting the my-let form into a nested series of such unary functions. Try expand-
ing the macro at the read-evaluate-print loop (REPL) to see the forms generated.
You’'re not doing any error checking here, but hopefully this example has reminded
you how macros work, as well as shown you how to seemingly add features to the Clojure

270

11.2

11.2.1

CHAPTER 11 More macros and DSLs

language itself. Use macroexpand-1, macroexpand, and clojure.walk/macroexpand-
all to get a hint as to how the my-1let does its thing. We’re now ready to look beyond
the basics.

In this section, we’re going to explore three new concepts. The first is that of ana-
phora, an approach of writing macros that utilize intentional variable capture to their
advantage. You’ll see why they’re called anaphoric and how they can be used to add
special syntax features to Clojure.

The second concept we’ll explore is the idea of moving some of the computation
from a program’s runtime into its compile time. Some computation that would other-
wise be done when the program is already running will now be done while the code is
being compiled. You’ll see not only where this might be useful but also an example of
precomputing decrypting tables.

Finally, we’ll look at writing macros that generate other macros. This can be tricky,
and we’ll look at a simple example of such a macro. Understanding macro-generating
macros is a sign of being on the path to macro Zen.

Without further ado, our first stop is Clojure anaphora.

Anaphoric macros

In chapter 7, we talked about the issue of variable capture. As a reminder, variable
capture happens when a variable name in a macro expansion (say in a generated let
binding) shadows something outside that immediate scope (say in an outer let bind-
ing). You saw that Clojure solves this issue in an elegant manner through two pro-
cesses: the first is that names inside a macro template get namespace qualified to the
namespace that the macro is defined in, and the second is by providing a convenient
auto-gensym reader macro.

Macros that do their work based on intentional variable capture are called ana-
phoric macros (anaphor means a word or phrase that refers to an earlier word or
phrase). In this section, we’ll do more variable capture but in a slightly more complex
manner. To get things started, we’ll visit a commonly cited example that illustrates this
concept. You’ll then build on it to write a useful utility macro.

The anaphoric if

Writing the anaphoric version of the if construct is the “Hello, world!” of anaphora.
The anaphoric if is probably one of the simplest of its ilk, but it illustrates the point
well, while also being a useful utility macro.

Consider the following example, where you first do a computation, check if it’s
truthy, and then proceed to use it in another computation. Imagine that you had the
following function:

(defn some-computation [x]
(if (even? x) false (inc x)))

Anaphoric macros 271

It’s a placeholder to illustrate the point we’re about to make. Now consider a use case
as follows:

(if (some-computation 11)
(* 2 (some-computation 11)))
;=> 24

Naturally, you wouldn’t stand for such duplication, and you’d use the let form to
remove it:

(let [computation (some-computation 11)]
(if computation
(* 2 computation)))

You also know that you don’t need to stop here, because you can use the handy if-let
macro:

(if-let [computation (some-computation 11)]
(* 2 computation))

Although this is clear enough, it would be nice if you could write something like the
following, for it to read more clearly:

(anaphoric-if (some-computation 11)
(* 2 it))

Here, it is a symbol that represents the value of the condition clause. Most anaphoric
macros use pronouns such as it to refer to some value that was computed.

Although the anaphoric style can produce very compact and easy-to-read code
(that is, if you know what the anaphoric names are), Clojure idiom prefers to allow
the user to provide a name to bind, such as in if-let. You should prefer this idiom,
too, because such code is clearer and allows nested forms easily while being only slightly
more verbose. But the anaphoric style is useful in DSLs, especially those designed for
non-programmers.

IMPLEMENTING ANAPHORIC-IF
Now that you’ve seen what you’d like to express in the code, let’s set about implement-
ing it. You could imagine writing it as follows:

(defmacro anaphoric-if [test-form then-form]
ST (if-let [~'it ~test-form]
~then-form))

Here’s the macro expansion of the example from earlier:

(macroexpand-1 ' (anaphoric-if (some-computation 11)
(* 2 1it)))
;=> (clojure.core/if-let [it (some-computation 11)] (* 2 it))

272 CHAPTER 11 More macros and DSLs

That expansion looks exactly like what you need because it creates a local name it
and binds the value of the test-form to it. It then evaluates the then-form inside the
let block created by the if-let form, which ensures that it happens only if the value
of it is truthy. Here it is in action:

(anaphoric-if (some-computation 12)
(* 2 it))

1=> nil

(anaphoric-if (some-computation 11)
(* 2 it))

1=> 24

Notice how you had to force Clojure not to namespace qualify the name it. You do
this by unquoting a quoted symbol (that’s what the strange notation ~'it is). This
forces the variable capture. You’ll use this technique (and the unquote splice version
of it) again in the following sections.

NOTE Remember that when you’re using anaphora, you’re using variable
capture. So although it may be okay that the symbol it is captured in this
example, that may not always be the case. Watch for situations where inten-
tional variable capture can cause subtle bugs.

Now that you have an anaphoric version of if, you’ll write a macro that generalizes it
a little.

GENERALIZING THE ANAPHORIC IF
Recall the implementation of the anaphoric if macro:

(defmacro anaphoric-if [test-form then-form]
“(if-let [~'it ~test-form]
~then-form))

Note that you built this on the if-let macro, which in turn is built on the if special
form. If you were to remove the hard dependency on the if special form and instead
specify it at call time, you could have a more general version of this code on your
hands. Let’s take a look:

(defmacro with-it [operator test-form & exprs]
“(let [~'it ~test-form]
(~operator ~'it ~@exprs)))

So, you take the idea from anaphoric-if and create a new version of it where you
need to pass in the thing you’re trying to accomplish. For instance, the example from
before would now read like this:

(with-it if (some-computation 12)
(* 2 it))

;=> nil

(with-it if (some-computation 11)
(* 2 it))

i=> 24

11.2.2

Anaphoric macros 273

Why would you want to do this? Because now you can have an anaphoric version of
more than just the if form. For example, you could create anaphoric versions of and
and when, as shown here:

(with-it and (some-computation 11) (> it 10) (* 2 it))
;=> 24

Or you could do this:

(with-it when (some-computation 11)
(println "Got it:" it)

(* 2 it))
Got it: 12
i=> 24

Try these out at the REPL, and also try versions that use if-not, or, when-not, and so
on. You could even go back and define macros like anaphoric-if in terms of with-it,
for instance:

(defmacro anaphoric-if [test-form then-form]
“(with-it if ~test-form ~then-form))

You could define all such variants (using if, and, or, and so on) in one swoop.

This wraps up our introduction to anaphoric macros. As we mentioned at the
start of this section, these examples are quite simple. The next one will be slightly
more involved.

The thread-it macro

A couple of the most useful macros in Clojure’s core namespace are the threading
macros—the thread-first macro (->) and the thread-last macro (->>), which we cov-
ered in chapter 2. As a refresher, you’ll write a function to calculate the surface area of
a cylinder with a radius r and height h. The formula is

2 * PIT * r * (r + h)

Using the thread-first macro, you can write this as

(defn surface-area-cylinder [r h]
(-> r
(+ h)
(* 2 Math/PI r)))

You saw a similar example when you first encountered this macro. Instead of writing
something like a let form with intermediate results of a larger computation, the first
form is placed into the next form as the first argument, the resulting form is then
placed into the next form as its first argument in turn, and so on. It’s a significant
improvement in code readability.

274

CHAPTER 11 More macros and DSLs

The thread-last macro is the same, but instead of placing consecutive results in the
first argument position of the following form, it places them in the position of the last
argument. It’s useful in code that’s similar to the following hypothetical example:
(defn some-calculation [a-collection]

(->> (seqg a-collection)
filter some-pred?)

(
(map a-transform)
(reduce another-function)))

THREADING IN ANY POSITION

Now, although both the thread-first and thread-last macros are extremely useful, they
do have a possible shortcoming: they both fix the position of where each step of the
computation is placed into the next form. The thread-first macro places it as the first
argument of the next call, whereas the thread-last macro places it in the position of
the last argument.

Occasionally, this can be limiting. Consider the previous code snippet. Imagine
you wanted to use a function written by someone else called compute-averages-from
that accepts two arguments: a sequence of data and a predicate, in that order As it
stands, you couldn’t plug that function into the threaded code shown previously,
because the order of arguments was reversed. You’d have to adapt the function, per-
haps as follows:

(defn another-calculation [a-collection] Notice the anonymous
(->> (seq a-collection) function reader macro,
(filter some-pred?) required because of
(map a-transform) threading order of the
(# (compute-averages-from % another-pred?)))) thread-last macro

You’ve seen the use of anonymous functions to create adapter functions such as this
before, but it isn’t pretty. It spoils the overall elegance by adding some noise to the
code. What if, instead of being limited to threading forms as the first and last argu-
ments of subsequent forms, you could choose where to thread them? Clojure 1.5
introduced the as-> threading macro (which you saw in chapter 2) to do just that.
You could rewrite the preceding example as follows:

Result of each step will
(defn another-calculation [a-collection] J be bound to result.
(as-> (seq a-collection) result
(filter some-pred? result) You don’t need an
(map a-transform result) anonymous function
(compute-averages-from result another-pred?))) anymore: you just
put result in the
right place.

IMPLEMENTING THREAD-IT
Just like 1f-1let, as-> requires that you supply a symbol for bindings. You created an
anaphoric-if macro that always binds to the symbol it. Now you’re going to create a

Anaphoric macros 275

version of as->, called thread-it, which will always bind to the symbol it. With this
new macro, you’ll be able to do something like this:
(defn yet-another-calculation [a-collection]
(thread-it (seq a-collection)
(filter some-pred? it)

(map a-transform it)
(compute-averages-from it another-pred?)))

Before we jump into the implementation, let’s add another change to the way Clo-
jure’s built-in threading macros work, in that they expect at least one argument. You’d
like to be able to call the thread-it macro without any arguments. This may be useful
when you’re using it inside another macro. Although the following doesn’t work

(->>

ArityException Wrong number of args (0) passed to: core/->>
clojure.lang.Compiler.macroexpandl (Compiler.java:6557)

you’d like the macro to do this:

(thread-it)
;=> nil

Now we’re ready to look at the implementation. Consider the following:

(defmacro thread-it [& [first-expr & rest-expr]]
(if (empty? rest-expr)
first-expr
“(let [~'it ~first-expr]
(thread-it ~@rest-expr))))

As you can see, the macro accepts any number of arguments. The list of arguments is
destructured into the first (named first-expr) and the rest (named rest-expr).
The first task is to check to see if rest-expr is empty (which happens when either no
arguments were passed in or a single argument was passed in). If this is so, the macro
will return first-expr, which will be nil if there were no arguments passed into
thread-it or the single argument if only one was passed in.

If there are arguments remaining inside rest-expr, the macro expands to another
call to itself, with the symbol it bound to the value of first-expr, nestled inside a let
block. This recursive macro definition expands until it has consumed all the forms it
was passed in. Here’s an example of it in action:

(thread-it (* 10 20) (inc it) (- it 8) (* 10 it) (/ it 5))
j=> 386

Also, with the way it’s implemented, the following behavior is expected:

(thread-it it)
CompilerException java.lang.RuntimeException: Unable to resolve symbol: it in
this context, compiling: (NO_SOURCE PATH:1:1)

276

11.3

11.3.1

CHAPTER 11 More macros and DSLs

This happens because you don’t start by binding anything to it. You could change
this behavior by initially binding it to a default value of some kind. That’s all there is
to the implementation. It can be a useful macro in situations where the functions (or
macros) in a threading form take arguments in an irregular order. Further, as a refine-
ment, or perhaps as another version of this macro, you could replace the let with an
if-let. This will short-circuit the computation if any step results in a logically false
value like the some-> and some->> macros.

This leads us to the end of the discussion on anaphora. It’s a useful technique at
times, even though it breaks hygiene because it involves variable capture. As men-
tioned, you have to be careful while using it, but when you do, it can result in code
that’s more readable than it would be otherwise.

Shifting computation to compile time

Our next stop is to examine another use case of macros. You're going to make the
Clojure compiler work harder by doing some work that would otherwise have to be
done by your program at runtime.

Example: Rotation ciphers without macros

So far in this book, you’ve seen several uses of macros and have written several macros
yourself. In this section, you’re going to see another use of macros, and it has to do
with performance. To illustrate the concept, we’ll examine a simple code cipher called
ROT13. It stands for “rotate by 13 places” and is a simple cipher that can be broken
quite easily. But its purpose is to hide text in a way that isn’t immediately obvious, so as
not to communicate spy secrets. It’s commonly used as the online equivalent of text
printed upside down (for example, in magazines and newspapers), to give out puzzle
solutions, answers to riddles, and the like.

ABoUT THE ROT13 CIPHER
Table 11.1 shows what each letter of the alphabet corresponds to.

Table 11.1 Alphabet rotated by 13 places

123 (4|56 |7 |8 |9 10 11 12 13 14 |15 |16 |17 18 (19 20 21 |22 |23 |24 |25 |26

alblc|d|e|f|g|h]i|j|k|l|mnjo|lp|lag|lr|s|t|lulv|w|Xx|y]|z

nfo|p|lqg|lr|s|tjulv|w|x|y|z|a|b|lc|d|e|lf|g|h|i|lj|k|Il|m

The first row is the index for each letter of the alphabet, starting at 1. The second row
is the alphabet itself. The last row is the alphabet shifted by 13 places. Each letter on
this last row corresponds to the letter that will be used in place of the letter above it
in a message encrypted using this cipher system. For example, the word abracadabra
becomes noenpngnoen.

Shifting computation to compile time 277

Decrypting a rotation cipher is usually done by rotating each letter back the same
number of times. ROT13 has the additional property of being a reciprocal cipher. A
message encrypted using a reciprocal cipher can be decrypted by running it through
the cipher system itself. The encryption process also works to decrypt encrypted mes-
sages. In this section, you’ll implement a generalized rotation cipher by allowing the
rotation length to be passed in as a parameter.

GENERALIZED ROTATION CIPHERS
Let’s begin the implementation with the letters of the alphabet. Recall that Clojure
has a convenient reader macro to represent literal characters:

(def ALPHABETS [\a \b \c \d \e \f \g \h \i \j \k \1 \m \n \o \p \g \r \s \t
\u \v \w \x \y \zl)

Let’s also define a few convenience values based on the alphabet shown:

(def NUM-ALPHABETS (count ALPHABETS))
(def INDICES (range 1 (inc NUM-ALPHABETS)))
(def lookup (zipmap INDICES ALPHABETS))

Now, let’s talk about your approach. Because you want to implement a generic rota-
tion mechanism, you’ll need to know at which numbered slot a letter falls when it’s
rotated a specific number of times. You’d like to take a slot number such as 14, rotate
it by a configurable number, and see where it ends up. For example, in the case of
ROT13, the letter in slot 10 (which is the letter j) ends up in slot 23. You’ll write a func-
tion called shift, which will compute this new slot number. You can’t add the shift-by
number to the slot number because you’ll have to take care of overflow. Here’s the
implementation of shift:

(defn shift [shift-by index]
(let [shifted (+ (mod shift-by NUM-ALPHABETS) index)]

(cond
(<= shifted 0) (+ shifted NUM-ALPHABETS)
(> shifted NUM-ALPHABETS) (- shifted NUM-ALPHABETS)

:default shifted)))

There are a couple of points to note here. The first is that you calculated shifted by
adding (mod shift-by NUM-ALPHABETS) to the given index (and not shift-by) so that
you can handle the cases where shift-by is more than NUM-ALPHABETS. Because you
handle overflow by wrapping to the beginning, this approach works, for example:

(shift 10 13)
;=> 23
(shift 20 13)
1=> 7

Now that you have this function, you can use it to create a simple cryptographic tab-
leau, a table of rows and columns with which you can decrypt or encrypt information.

278

CHAPTER 11 More macros and DSLs

In this case, for ROT13, the tableau would be the second and third rows from table 15.1.
Here’s a function that computes this:
(defn shifted-tableau [shift-by]

(->> (map #(shift shift-by %) INDICES)

(map lookup)
(zipmap ALPHABETS)))

This creates a map where the keys are alphabets that need to be encrypted, and values
are the cipher versions of the same. Here’s an example:

(shifted-tableau 13)

;=> {\a \n, \b \o, \c \p, \d \a, \e \r, \£ \s, \g \t, \h \u, \i \v, \j \w, \k
\x, \1 \y, \m \z, \n \a, \o \b, \p \c, \q \d, \r \e, \s \£f, \t \g, \u
\h, \v \i, \w \j, \x \k, \y \1, \z \m}

Because this cipher is quite simple, a simple map such as this suffices. Now that you
have your tableau, encrypting messages is as simple as looking up each letter. Here’s
the encrypt function:

(defn encrypt [shift-by plaintext]

(let [shifted (shifted-tableau shift-by)]
(apply str (map shifted plaintext))))

Try it at the REPL:

(encrypt 13 "abracadabra")

;=> "noenpngnoen"

That works as expected. Recall that ROT13 is a reciprocal cipher. Check to see if it works:

(encrypt 13 "noenpngnoen")
;j=> "abracadabra"

It does! If you rotate by anything other than 13, you’ll need a real decrypt function.
All you need to do to decrypt a message is to reverse the process. You’ll express that
as follows:

(defn decrypt [shift-by encrypted]
(encrypt (- shift-by) encrypted))

decrypt works by rotating an encrypted message the other way by the same rotation.
This shows how it works at the REPL:

(decrypt 13 "noenpngnoen")
;=> "abracadabra"

Great, so you have all the bare necessities in place. To implement a particular cipher,
such as ROT13, you can define a pair of functions as follows:

(def encrypt-with-rotl3 (partial encrypt 13))
(def decrypt-with-rotl3 (partial decrypt 13))

11.3.2

Shifting computation to compile time 279

Now try it at the REPL:

(decrypt-with-rotl3 (encrypt-with-rotl3 "abracadabra"))
;=> "abracadabra"

So there you have it; you've implemented the simple cipher system. The complete
code is shown in the following listing.

(ns clj-in-act.chll.shifting)
(def ALPHABETS [\a \b \c \d \e \f \g \h \i \j \k \1 \m \n \o \p \g \r \s \t
\u \v \w \x \y \z])
def NUM-ALPHABETS (count ALPHABETS))
def INDICES (range 1 (inc NUM-ALPHABETS)))
def lookup (zipmap INDICES ALPHABETS))
defn shift [shift-by index]
(let [shifted (+ (mod shift-by NUM-ALPHABETS) index)]

(
(
(
(

(cond
(<= shifted 0) (+ shifted NUM-ALPHABETS)
(> shifted NUM-ALPHABETS) (- shifted NUM-ALPHABETS)

:default shifted)))
(defn shifted-tableau [shift-by]
(->> (map #(shift shift-by %) INDICES)
(map lookup)
(zipmap ALPHABETS)))
(defn encrypt [shift-by plaintext]
(let [shifted (shifted-tableau shift-by)]
(apply str (map shifted plaintext))))
(defn decrypt [shift-by encrypted]
(encrypt (- shift-by) encrypted))
(def encrypt-with-rotl3 (partial encrypt 13))
(def decrypt-with-rotl3 (partial decrypt 13))

The issue with this implementation is that you compute the tableau each time you
encrypt or decrypt a message. This is easily fixed by memoizing the shifted-tableau
function. This will take care of this problem, but in the next section, you’ll go one
step further.

Making the compiler work harder

So far, you’ve implemented functions to encrypt and decrypt messages for any rotation
cipher. Your basic approach has been to create a map that can help you code (or decode)
each letter in a message to its cipher version. As discussed at the end of the previous sec-
tion, you can speed up your implementation by memoizing the tableau calculation.
Even with memoize, the computation still happens at least once (the first time the
function is called). Imagine, instead, if you created an inline literal map containing
the appropriate tableau data. You could then look it up in the map each time, without
having to compute it. Such a definition of encrypt-with-rot13 might look like this:

(defn encrypt-with-rotl3 [plaintext]
(apply str (map {\a \n \b \o \c \p} plaintext)))

280

CHAPTER 11 More macros and DSLs

In an implementation, the tableau would be complete for all the letters of the alpha-
bet, not only for \a, \b, and \c. In any case, if you did have such a literal map in the
code itself, it would obviate the need to compute it at runtime. Luckily, you’re coding
in Clojure, and you can bend it to your will. Consider the following:

(defmacro def-rot-encrypter [name shift-by]
(let [tableau (shifted-tableau shift-by)]
" (defn ~name [~'message]
(apply str (map ~tableau ~'message)))))

This macro first computes the tableau for shifted-by as needed and then defines a
function by the specified name. The function body includes the computed table, in
the right place, as illustrated in the preceding code sample. Look at its expansion:

(macroexpand-1 ' (def-rot-encrypter encryptl3 13))

;=> (clojure.core/defn encryptl3 [message] (clojure.core/apply clojure.core/
str (clojure.core/map {\a \n, \b \o, \c \p, \d \g, \e \r, \f \s, \g \t,
\h \u, \i \v, \j \w, \k \x, \1 \y, \m \z, \n \a, \o \b, \p \c¢, \g@ \d, \r
\e, \s \£, \t \g, \u \h, \v \i, \w \j, \x \k, \y \1, \z \m} message)))

This looks almost exactly like the desired function, with an inline literal tableau map.
Figure 11.1 shows the flow of the code.

Reader

Code as data

def-rot-encrypter

Macro expansion
(calls shifted-tableau function)

Figure 11.1 As usual, the Clojure reader first
converts the text of your programs into data
structures. During this process, macros are
expanded, including the def-rot-encrypter
Evaluate Compile macro, which generates a tableau. This tableau
is a Clojure map and is included in the final form
Code with inline Clojure tableau map of the source code as an inline lookup table.

114

Macro-generating macros 281

Now check to see if it works:

(def-rot-encrypter encryptl3 13)
;=> #'user/encryptl3

(encryptl3 "abracadabra")

;=> "noenpngnoen"

And there you have it. The new encrypt13 function at runtime doesn’t do any tableau
computation at all. If, for instance, you were to ship this code off to users as a Java
library, they wouldn’t even know that shifted-tableau was ever called.

As a final item, you’ll create a convenient way to define a pair of functions that can
be used to encrypt or decrypt functions in a rotation cipher:
(defmacro define-rot-encryption [shift-byl

~ (do

(def-rot-encrypter ~(symbol (str "encrypt" shift-by)) ~shift-by)
(def-rot-encrypter ~(symbol (str "decrypt" shift-by)) ~(- shift-by))))

And finally, here it is in action:

(define-rot-encryption 15)
;=> #'user/decryptl5

Here, it prints the decrypt function var, because it was the last thing the macro expan-
sion did. Now use the new pair of functions:

(encryptl5 "abracadabra")
i=> "pqagprpspqagp"
(decryptl5 "pagprpspagp")
;j=> "abracadabra"

Shifting computation to the compile cycle can be a useful trick when parts of the com-
putation needed are known in advance. Clojure macros make it easy to run arbitrary
code during the expansion phase and give the programmer the power of the full Clo-
jure language itself. In this example, for instance, you wrote the shifted-tableau
function with no prior intention of using it in this manner. Moving computation into
macros this way can be quite handy at times, despite how simple it is to do.

Macro-generating macros

Now that you understand what it is to move computation to the compile phase of pro-
gram execution, you’re ready for a new adventure. You’ll expand your mind a little as
you try to write code that writes code that writes code—that is, you’re going to write a
macro that writes a macro.

Let’s look at an example of a macro that will create a synonym for an existing func-
tion or macro. Imagine you have two vars as follows:

(declare x y)
;=> #'user/y

282

114.1

11.4.2

CHAPTER 11 More macros and DSLs

And if you use the new macro make-synonym
(make-synonym b binding)

;=> #'user/b

then the following should work:

(b [x 10 y 20] [x y])

;=> [10 20]

You’ll implement the make-synonym macro in this section.

Example template

When writing a macro, it’s usually easier to start with an example of the desired expan-
sion. Here’s what you want to write:

(b [x 10 y 20] (println "X,Y:" x vy))

And for it to work, b should be replaced with binding, resulting in the expansion
(binding [x 10 y 20] (println "X,Y:" x y))

You could easily solve this if you wrote a custom macro defining b in terms of binding,
as follows:

(defmacro b [& stuff]

" (binding ~@stuff))

This replaces the symbol b with the symbol binding, keeping everything else the same.
You aren’t interested in the vars being bound, or the body itself, which is why you
lump everything into stuff.

Now that you have a version of b that works as expected, you need to generalize it
into make-synonym. The previous code is an example of what the make-synonym macro
ought to produce.

Implementing make-synonym
You know that make-synonym is a macro and that it accepts two parameters:

= A new symbol that will be the synonym of the existing macro or function

= The name of the existing macro or function

You can begin implementing the new macro by starting with an empty definition:

(defmacro synonym [new-name old-name])

The next question is, what should go in the body? You can start by putting in the sam-
ple expansion from the previous section. Here’s what it looks like:
(defmacro make-synonym [new-name old-namel]

(defmacro b [& stuff]
“ (binding ~@stuff)))

Macro-generating macros 283

Obviously, this won’t work as desired, because no matter what’s passed in as arguments
to this version of make-synonym, it will always create a macro named b (that expands
to binding).

What you want, instead, is for make-synonym to produce the inner form containing
the call to defmacro, instead of calling it. You know you can do this using the back-
quote. In this case, you’ll have two backquotes. While you’re at it, instead of the hard-
coded symbols b and binding, you’ll use the names passed in as parameters. Consider
the following increment of the make-synonym macro:

(defmacro make-synonym [new-name old-namel
" (defmacro ~new-name [& stuff]
~ (~old-name ~@stuff)))

This is a little confusing, because you have two backquotes in play here, one nested
inside the other. The easiest way to understand what’s happening is to look at an
expansion. So try it at the REPL:

(macroexpand-1 ' (make-synonym b binding))
;=> (clojure.core/defmacro b [& user/stuff]
(clojure.core/seq
(clojure.core/concat (clojure.core/list user/old-name)
user/stuff)))

To understand this expansion, let’s first look at what happens to a backquote when
it’s expanded:

(defmacro back-quote-test []

> (something))
;=> #'user/back-quote-test
(macroexpand ' (back-quote-test))
;=> (user/something)

This isn’t surprising, because the Clojure namespace qualifies any names unless explic-
itly asked not to. Now, add a backquote:

(defmacro back-quote-test []
~* (something))
;=> #'user/back-quote-test

You've added another backquote to the one already present. What you’re saying is
that instead of expanding the backquoted form and using its return value as the
expansion of the back-quote-test macro, you want the backquoting mechanism
itself. Again, to refresh your memory of how backquotes work, refer to chapter 7.
Here it is at the REPL:

(macroexpand ' (back-quote-test))
;=> (clojure.core/seq
(clojure.core/concat (clojure.core/list (quote user/something))))

284

CHAPTER 11 More macros and DSLs

Because you’re using the symbol something as is, Clojure is namespace qualifying, as
you’d expect. Now that you know what the backquote mechanism itself is, you can
return to the expansion of make-synonym:

(macroexpand-1 ' (make-synonym b binding))
;=> (clojure.core/defmacro b [& user/stuff]
(clojure.core/seq
(clojure.core/concat clojure.core/list user/old-name) user/stuff)))

Here, the symbol b gets substituted as part of the expansion of the outer backquote
expansion. Because you don’t explicitly quote the symbol stuff, it gets namespace
qualified (you’ll need to fix that soon). To understand what’s happening to old-name
inside the nested backquote, look at the following:

(defmacro back-quote-test []
** (~something))
;=> #'user/back-quote-test
(macroexpand ' (back-quote-test))
;=> (clojure.core/seq (clojure.core/concat (clojure.core/list user/
something)))

If you compare this to the previous version of back-quote-test and the expansion it
generated, you’ll notice that user/something is no longer wrapped in a quote form.
This is again as expected, because you’re unquoting it using the ~ reader macro. This
explains why the nested backquote form of the make-synonym macro expands with
user/old-name as it does. Again, you’ll need to fix this problem because you don’t
want the symbol old-name but the argument passed in.

Finally, to see what’s going on with the unquote splicing and the stuff symbol,
look at the following simpler example:

(defmacro back-quote-test []
~ (~@something))
;=> #'user/back-quote-test
(macroexpand ' (back-quote-test))
;=> (clojure.core/seq (clojure.core/concat user/something))

If you now compare this version of the expansion with the previous one, you’ll
note that user/something is no longer wrapped in a call to 1ist. This is in line
with the expected behavior of unquote splicing in that it doesn’t add an extra set
of parentheses.

At this point, we’ve walked through the complete expansion of the make-synonym
macro. The only problem is that it still doesn’t do what you intended it to do. The two
problems identified were that both stuff and old-name weren’t being expanded cor-
rectly. You’ll fix stuff first. Consider the following change to make-synonym:

(defmacro make-synonym [new-name old-name]
" (defmacro ~new-name [& ~'stuff]
" (~old-name ~@~'stuff)))

11.4.3

Macro-generating macros 285

Here’s the expansion:

(macroexpand-1 ' (make-synonym b binding))
;=> (clojure.core/defmacro b [& stuff]
(clojure.core/seq (clojure.core/concat
(clojure.core/list user/old-name) stuff)))

Finally, you’ll fix the issue with user/old-name:

(defmacro make-synonym [new-name old-name]
" (defmacro ~new-name [& ~'stuff]
" (~'~0ld-name ~@~'stuff)))

And here’s the expansion:

(macroexpand-1 ' (make-synonym b binding))
;=> (clojure.core/defmacro b [& stuff]
(clojure.core/seq (clojure.core/concat
(clojure.core/list (quote binding)) stuff)))

Notice the odd ~'~old-name quoting and unquoting. This evaluates like so: first,
~old-name is expanded, leaving ~'binding (the value of old-name) for the generated
macro. Then the outer backquote is expanded, leaving you with 'binding, which
finally becomes (quote binding). You have to do this to ensure that the value of old-
name isn’t resolved until the generated macro expands.

To check to see if this is what you expect, compare it with your original template:

(defmacro b [& stuff]
" (binding ~@stuff))

This is indeed what you set out to do, and you can test it as follows:

(declare x y)

;=> #'user/y
(make-synonym b binding)
;=> #'user/b

(b [x 10 y 20] [x y])
;=> [10 20]

Phew, you’re finished. That was a lot of calisthenics for three lines of code. We’ll wrap
up this section with why you even bothered with this somewhat esoteric code.

Why macro-generating macros

There are at least two reasons why it’s useful to know how to write macros that gener-
ate macros. The first is the same reason you’d write any other kind of macro: to create
abstractions that remove the duplication that arises from patterns in the code. This is
important when these duplications are structural and are difficult to eliminate with-
out some form of code generation. Clojure macros are an excellent tool to do this job,

286

11.5

11.5.1

CHAPTER 11 More macros and DSLs

because they give the programmer the full power of Clojure to do it. The fact that
code generation is a language-level feature does pull its weight.

Having said this, although writing macros is a common thing to do in a Clojure
program, it isn’t often the case that a macro generates another macro. You’ll probably
do it only a handful of times in your career. Combined with the other uses you've
seen, such as moving computation to compile time and intentional symbol capture—
the few times when you do need macros to abstract patterns out of macros them-
selves—writing macros to generate macros can lead to a solution that would be diffi-
cult without the technique.

The second reason, and the more commonly useful one, for knowing this concept
is to drive home the process of macro expansion, quoting, and unquoting. If you can
understand and write macros that generate macros, then you’ll have no trouble writ-
ing simpler ones.

With these topics about macro writing out of the way, we’re ready to move on to a
couple of examples. In the next section, we’ll look at using macros to create domain-
specific languages (DSLs).

Domain-specific languages

We’re now going to look at explicitly doing something you’ve been doing implicitly so
far. In several chapters, you’'ve written macros that appear to add features to the Clo-
jure language itself. For example,

= In chapter 8, you created a simple object system with most of the semantics of
regular object-oriented languages.

= In chapter 9, you created def -modus -operandi, which allowed multimethods to
be used in a manner similar to Clojure protocols.

These are just a couple of examples of macros helping you present your abstractions
as a convenient feature of the language.

In this section, we’re going to further explore the idea of wrapping your abstrac-
tions in a layer of language. Taking this idea to its logical end brings us to the concept
of metalinguistic abstraction—the approach of creating a domain-specific language
that’s then used to solve the problem at hand. It allows you to solve not only the
problem you started out with but a whole class of problems in that domain. It leaves
you with a system that’s highly flexible and maintainable, while staying small and
easier to understand and debug. Let’s begin by examining the design philosophy that
leads to such systems.

DSL-driven design

To design a DSL you must consider two factors: how can the DSL decompose its prob-

lem domain into its various parts (the language’s “vocabulary”), and how will it facili-
tate composing those parts back together in expressive ways (its “grammar”)?

Domain-specific languages 287

DESIGN CONSIDERATION #1: DECOMPOSITION

When given the requirements of a software program, the first step in creating a pro-
gram to satisfy them usually involves thinking about what approach to take. This might
end with a big design session that produces a detailed breakdown of the various com-
ponents and pieces that will compose the final solution.

Top-down decomposition
This often goes hand in hand with the traditional top-down decomposition technique

of taking something large and complex and breaking it into pieces that are smaller,
independent, and easier to understand.

By itself, this approach has been known to not work particularly well in most
cases. This is because the requirements for most systems are never specified per-
fectly, which causes the system to be redesigned in ways big and small. Many times,
the requirements explicitly change over time as the reality of the business itself
changes. This is why most agile teams prefer an evolutionary design, one that arises
from incrementally building the system to satisfy more and more of the require-
ments over time.

When such an approach is desirable (and few systems can do without it these
days), it makes sense to think not only in a top-down manner but also in a bottom-
up way.

Bottom-up decomposition

Decomposing a problem in a bottom-up manner is different from the top-down ver-
sion. With the bottom-up approach, you create small abstractions on top of the core
programming language to handle tiny elements of the problem domain. These
domain-specific primitives are created without explicit thought to exactly how they’ll
eventually be used to solve the original problem. Indeed, at this stage, the idea is to
create primitives that model all the low-level details of the problem domain.

DESIGN CONSIDERATION #2: COMBINABILITY

The other area of focus is combinability. The various domain primitives should be
combinable into more complex entities as desired. This can be done using either
the combinability features of the programming language itself (for instance, Clo-
jure’s functions) or by creating new domain-specific constructs on top of existing
ones. Macros can help with such extensions, because they can manipulate code forms
with ease.

Functional programming aids in the pursuit of such a design. In addition to recur-
sive and conditional constructs, being able to treat functions as first-class objects
allows higher levels of complexity and abstraction to be managed in a more natural
manner. Being able to create lexical closures adds another powerful piece to your
toolset. When higher-order functions, closures, and macros are used together, the
domain primitives can be combined to solve more than the original problem specified
in the requirements document. It can solve a whole class of problems in that domain,
because what gets created at the end of such a bottom-up process is a rich set of

288

CHAPTER 11 More macros and DSLs

primitives, operators, and forms for combination that closely models the business
domain itself.

The final layers of such a system consist of two pieces. The topmost is literally
the respecification of the requirements in an executable DSL. This is metalinguistic
abstraction, manifested in the fact that the final piece of the system that seems to solve
the problem is written not in a general-purpose programming language but in a lan-
guage that has been grown organically from a lower-level programming language. It’s
often understandable by nonprogrammers and indeed is sometimes suitable for them
to use directly.

The next piece is a sort of runtime adapter, which executes the domain-specific
either by interpreting it or by compiling it down to the language’s own primitives. An
example may be a set of macros that translate the syntactically friendly code into other
forms and code that sets up the right evaluation context for it. Figure 11.2 shows a
block diagram of the various layers described.

Domain-specific code

Runtime for DSL code

Higher-level entities: data and control

Domain-specific data structure Domain-specific control structure

Low-level domain primitives

Clojure

Figure 11.2 The typical layers in a DSL-driven system. Such systems
benefit from a bottom-up design where the lowest levels are the
primitive concepts of the domain modeled on top of the basic Clojure
language. Higher layers are compositions of these primitives into more
complex domain concepts. Finally, a runtime layer sits on top of these,
which can execute code specified in a DSL. This final layer often
represents the core solution of the problem that the software was
meant to solve.

It’s useful to point out that a domain-specific language isn’t about using macros, even
though they’re often a big part of the final linguistics. Macros help with fluency of the
language, especially as used by the end users but also at lower levels to help create the
abstractions themselves. In this way, they’re no different from other available features
of the language such as higher-order functions and conditionals. The point to remem-
ber is that the core of the DSL approach is the resulting bottom-up design and the set
of easily combinable domain primitives.
In the next section, we’ll explore the creation of a simple DSL.

Domain-specific languages 289

11.5.2 User classification

Most websites today personalize the experience for individual users by using users’
own data to improve their experience. Amazon, for example, shows users things they
might like to buy based on their purchase history and browsing patterns. Other web
services use similarly collected use statistics to show more relevant ads to users as they
browse. In this section, we’ll explore this business domain.

The goal here is to use data about the user to do something special for them. It
could be showing ads or making the site more specific to the user’s tastes. The first
step in any such task is classifying the user. Usually, the system can recognize several
classes of users and is able to personalize the experience for each class in some way.
The business folks would like to be able to change the specification of the various
segments as they’re discovered, so the system shouldn’t hardcode this aspect. Fur-
ther, they’d like to make such changes quickly, potentially without requiring devel-
opment effort and without requiring a restart of the system after making such
changes. In an ideal world, they’d even like to specify the segment descriptions in a
nice little GUI application.

This example is well suited to our earlier discussion, but aspects of this apply to
most nontrivial systems being built today. For this example, you’ll build a DSL to spec-
ify the rules that classify users into various segments. To get started, you’ll describe the
lay of the land, which in this case will be a small part of the overall system design, as
well as a few functions available to find information about your users.

DATA ELEMENT
You’ll model a few primitive domain-specific data elements, focusing on things that

can be gleaned from the data that users’ browsers send to the server along with
every request. There’s nothing to stop you from extending this approach to things
that are looked up from elsewhere, such as a database of users’ past behaviors, or
indeed anything else, such as stock quotes or the weather in Hawaii. You’ll model
the session data as a simple Clojure map containing the data elements you care
about, and you’ll store it in Redis. You don’t need to focus on how you create the
session map, because this example isn’t about parsing strings or loading data from
various data stores.
Here’s an example of a user session:

{:consumer-id "abc"
:url-referrer "http://www.google.com/search?g=clojure+programmers"

:search-terms ["clojure" "programmers']
:ip-address "192.168.0.10"

:tz-offset 420

:user-agent :safari}

Again, sessions can contain a lot more than what comes in via the web request. You
can imagine loads of precomputed information being stored in such a session to
enable more useful targeting as well as a caching technique so that things don’t have
to be loaded or computed more than once in a user’s session.

290 CHAPTER 11 More macros and DSLs

USER SESSION PERSISTENCE

You’ll need a key to store such sessions in Redis,? and for this example :consumer-id
will serve you well. You’ll add a level of indirection so the code will read better as well
as let you change this decision later if you desire:

(def redis-key-for :consumer-id)

First, you’ll define a way to save sessions into Redis and also to load them back out.
Here’s a pair of functions that do that:

(defn save-session [session]

(redis/set (redis-key-for session) (pr-str session)))
(defn find-session [consumer-id]

(read-string (redis/get consumer-id)))

Now that you have the essential capability of storing and loading sessions, you have a
design decision to make. If you consider the user session to be the central concept in
your behavioral targeting domain, then you can write it such that the DSL always exe-
cutes in context of a session. You could define a var called *session* that you’ll then
bind to the specific one during a computation:

(def *:dynamic *session*)

And you could define a convenience macro that sets up the binding:

(defmacro in-session [consumer-id & body]
" (binding [*session* (find-session ~consumer-id)]
(do ~@body)))

The following listing shows the complete session namespace defined so far.

(ns clj-in-act.chll.session
(:require redis))
(def redis-key-for :consumer-id)
(def *:dynamic *session*)
(defn save-session [session]
(redis/set (redis-key-for session) (pr-str session)))
(defn find-session [consumer-id]
(read-string (redis/get consumer-id)))
(defmacro in-session [consumer-id & body]
" (binding [*session* (find-session ~consumer-id)]
(do ~@body)))

2 See http://redis.io. In this chapter we follow the redis-clojure library’s API by Ragnar Dahlén (https://github
.com/ragnard/redis-clojure), but you should use the newer and better Carmine library for your own projects
(https:// github.com/ptaoussanis/carmine). The code package with this book contains a redis namespace that
mocks enough of the redis-clojure library for you to run the code in this chapter without running a Redis
server or using a Redis library.

http://redis.io
https://github.com/ragnard/redis-clojure
https://github.com/ragnard/redis-clojure
https://github.com/ptaoussanis/carmine

Domain-specific languages 291

Now that you’ve dealt with persisting user sessions, next you’ll focus on the segmenta-
tion itself.

SEGMENTING USERS

In your application, you’d like to satisfy two qualitative requirements of this segmenta-
tion process. First, these rules shouldn’t be hardcoded into your application; it should
be possible to dynamically update the rules. Second, these rules should be expressed
in a format that’s somewhat analyst friendly. That is, the rules should be in a DSL that’s
somewhat simpler for nonprogrammers to express ideas in. Here’s an example of
something you might allow:

(defsegment googling-clojurians
(and
(> (count $search-terms) 0)
(matches? Surl-referrer "google")))

Here’s another example of the desired language:

(defsegment loyal-safari
(and
(empty? sSurl-referrer)
(= :safari Suser-agent)))

Notice the symbols prefixed with s. These are meant to have special significance in
your DSL, because they’re the elements that will be looked up and substituted from
the user’s session. Your job now is to implement def-segment so that the previous def-
inition is compiled into something meaningful.

Syntax of Clojure DSLs

In many programming languages, especially dynamic ones such as Ruby and Python,
domain-specific languages have become all the rage. There are two kinds of DSLs:
internal and external. Internal DSLs are hosted on top of a language such as Ruby and
use the underlying language to execute the DSL code. External DSLs are limited forms
of regular programming languages in the sense that they have a lexer and parser that
convert DSL code that conforms to a grammar into executable code. Internal DSLs are
often simpler and serve most requirements that a DSL might need to satisfy.

Such DSLs are often focused on providing English-like readability, and a lot of text-parsing
code is dedicated to converting the easy-to-read text into constructs of the underlying
language. Clojure, on the other hand, has its magical reader. It can read an entire char-
acter stream and convert it into a form that can be executed. The programmer doesn’t
have to do anything to support the lexical analysis, tokenizing, and parsing. Clojure even
provides a macro system to further enhance the capabilities of textual expression.

This is the reason why many Clojure DSLs look much like Clojure. Clojure DSLs are
often based on s-expressions because using the reader to do the heavy lifting of cre-
ating a little language is the most straightforward thing to do. The book DSLs in Action
by Debasish Ghosh (Manning Publications, 2010) is a great resource if you're inter-
ested in DSLs in a variety of languages.

292

CHAPTER 11 More macros and DSLs

You can start with a macro skeleton that looks like this:

(defmacro defsegment [segment-name & bodyl)

You’ll begin by handling the $ prefixes. You’ll transform the body expressions such
that all symbols prefixed by the $ will be transformed into a session lookup of an attri-
bute with the same name. Something like Suser-agent will become (:user-agent
sessions). To perform this transformation, you’ll need to recursively walk the body
expression to find all the symbols that need this substitution and then rebuild a new
expression with the substitutions made. Luckily, you don’t have to write this code
because it exists in the clojure.walk namespace. This namespace contains several
functions that are useful when walking through Clojure code data structures. The
postwalk function fits the bill:

(doc postwalk)

clojure.walk/postwalk

([f form])
Performs a depth-first, post-order traversal of form. Calls f on
each sub-form, uses f's return value in place of the original.
Recognizes all Clojure data structures except sorted-map-by.
Consumes seqgs as with doall.

;=> nil

This is what you need, so you can transform your DSL code using the following function:

(defn transform-lookups [dollar-attribute]
(let [prefixed-string (str dollar-attribute)]
(if-not (.startsWith prefixed-string "s")
dollar-attribute
(session-lookup prefixed-string))))

You’ll need a couple of support functions, namely, session-lookup and drop-first-
char, which can be implemented as follows:

(defn drop-first-char [name]
(apply str (rest name)))
(defn session-lookup [dollar-name]
(->> (drop-first-char dollar-name)
(keyword)
(list '*session*)))

Now test that the code you wrote does what’s expected:

(transform-lookups 'Suser-agent)
;=> (*session* :user-agent)

This is a simple test, but note that the resulting form can be used to look up attributes
of a user session if the *session* special var is bound appropriately.

Domain-specific languages 293

Now, use postwalk to test your replacement logic on a slightly more complex form:

(postwalk transform-lookups ' (> (count $search-terms) 0))
;=> (> (count (*session* :search-terms)) 0)

That works as expected. You now have a tool to transform the DSL body expressed
using the $-prefixed symbols into usable Clojure code. As an aside, you also have a
place where you can make more complex replacements if you need to.

You can now use this in the definition of defsegment as follows:

(defmacro defsegment [segment-name & bodyl]
(let [transformed (postwalk transform-lookups body)])

You’ve now transformed the body as specified by the user of your DSL, and you now
need to convert it into something you can execute later. Let’s look at what you’re
working with:

(postwalk transform-lookups ' (and

(> (count $search-terms) 0)
(= :safari sSuser-agent)))

;=> (and
(> (count (*session* :search-terms)) 0)
(= :safari (*session* :user-agent)))

The simplest way to execute this later is to convert it into a function. You can then call
the function whenever you need to run this rule. You used a similar approach when
you defined the remote worker framework, where you stored computations as anony-
mous functions that were executed on remote servers. If you’re going to do this, you’ll
need a place to put the functions. You’ll create a new namespace to keep all code
related to this storing of functions for later use. It’s shown in the following listing.

(ns clj-in-act.chll.dsl-store)
(def RULES (ref {}))
(defn register-segment [segment-name segment-fn]
(dosync
(alter RULES assoc-in [:segments segment-name] segment-fn)))
(defn segment-named [segment-namel
(get-in @RULES [:segments segment-name]))
(defn all-segments []
(:segments @RULES))

Now that you know you can put functions where you can find them again later, you’re
ready to improve the definition of defsegment:

(defmacro defsegment [segment-name & bodyl]
(let [transformed (postwalk transform-lookups body)]
“(let [segment-fn# (fn [] ~e@transformed)]
(register-segment ~ (keyword segment-name) segment-fn#))))

294

CHAPTER 11 More macros and DSLs

You now have all the pieces together for your DSL to compile. The following listing
shows the complete segment namespace.

(ns clj-in-act.chll.segment
(:use clj-in-act.chll.dsl-store
clojure.walk))
(defn drop-first-char [name]
(apply str (rest name)))
(defn session-lookup [dollar-name]
(->> (drop-first-char dollar-name)
(keyword)
(list '*gession¥*)))
(defn transform-lookups [dollar-attribute]
(let [prefixed-string (str dollar-attribute)]
(if-not (.startsWith prefixed-string "s")
dollar-attribute
(session-lookup prefixed-string))))
(defmacro defsegment [segment-name & body]
(let [transformed (postwalk transform-lookups body)]
“(let [segment-fn# (fn [] ~@transformed)]
(register-segment ~(keyword segment-name) segment-fn#))))

Here it is in action, at the REPL:

(defsegment loyal-safari
(and

(empty? Surl-referrer)
(= :safari Suser-agent)))

;=> {:segments

{:loyal-safari
#<user$eval3457$segment fn 3232 auto 3458

user$eval3457$segment fn 3232 auto 3458@5054c2b8>}}

The definition of googling-clojurians still won’t work, because it will complain
about an unknown matches? function. You’re going to solve this and add more func-
tionality in the next couple sections.

FINE-TUNING: THE POWER OF THE DSL

So far, you've put together the plumbing of the DSL. You can define some DSL code
and expect it to compile and some functions to be created and stored as a result. At
least three things influence how powerful your DSL can be.

The first is the data inside a user’s session. Entities such as $url-referrer and
$search-terms are examples of this. These data elements are obtained either directly
from the web session of the user, from historical data about the user, or from any
other source that has been used to load information into the user’s session.

The second factor is the number of primitives that can be used to manipulate the
data elements. Examples of such primitives are empty? and count. You've leveraged

Domain-specific languages 295

Clojure’s own functions here, but there’s nothing to stop you from adding more.
You’ll actually be adding a function called matches? to the example shortly.

The final factor is combinability, or how the data elements and the language
primitives can be combined to create more complex forms. Here again you can use
all of Clojure’s built-in facilities. For example, in the previous examples, you used
and and >.

In the next section, you’ll focus on creating new primitives, and then you’ll write
code to execute the DSL. Such new primitives will make the DSL more powerful and
expressive.

ADDING PRIMITIVES TO THE EXECUTION ENGINE
As you can imagine, matches? is a function. For the purposes of this example here, it
can be as simple as this:

(defn matches? ["String superset “String subset]

(and
(not (empty? superset))
(> (.indexOf superset subset) 0)))

You can add more functions such as this one, and they can be as complex as needed.
The user of the DSL doesn’t need to know how they’re implemented, because they’ll
be described as the primitives of the DSL.

Now, let’s go ahead and define the remainder of the execution engine. The first
piece is a function to load up with the DSL program. Typically, this will be some text
either written by a user or generated by another program such as a graphical rules edi-
tor. Given that ultimately the DSL is Clojure code, you can use load-string to load it.
Consider the following code:

(ns clj-in-act.chll.engine
(:use clj-in-act.chll.segment
clj-in-act.chll.session
clj-in-act.chll.dsl-store))
(defn load-code [code-string]
(binding [*ns* (:ns (meta #'load-code))]
(load-string code-string)))

Note that the load-code function first switches the namespace to its own (using meta-
data available on the load-code var) because all supporting functions are available in
it. This way, load-code can be called from anywhere, and all supporting functions can
be found. It then calls 1oad-string.

The next step is to execute a segment function and to see if it returns true or
false. A true value means that the user belongs to that segment. The following func-
tion checks this:

(defn segment-satisfied? [[segment-name segment-fn]]
(if (segment-fn)
segment -name))

296

CHAPTER 11 More macros and DSLs

You now have all the pieces to take a bunch of segment definitions and classify a user
into one or more of them (or none of them). Consider the classify function:

(defn classify []
(->> (all-segments)
(map segment-satisfied?)
(remove nil?)))

The complete source of the engine namespace is shown in the following listing.

(ns clj-in-act.chll.engine
(:use clj-in-act.chll.segment
clj-in-act.chll.session
clj-in-act.chll.dsl-store))
(defn load-code [code-string]
(binding [*ns* (:ns (meta #'load-code))]
(load-string code-string)))
(defn matches? ["“String superset “String subset]

(and
(not (empty? superset))
(> (.indexOf superset subset) 0)))
(defn segment-satisfied? [[segment-name segment-fn]]

(if (segment-£fn)
segment-name))
(defn classify []
(->> (all-segments)
(map segment-satisfied?)
(remove nil?)))

Now you’ll test it at the REPL. You’ll begin by creating a string that contains the defini-
tions of the two segments in your new DSL:

(def dsl-code (str
' (defsegment googling-clojurians
(and
(> (count $search-terms) 0)
(matches? Surl-referrer "google")))
' (defsegment loyal-safari
(and
(empty? Surl-referrer)
(= :safari Suser-agent)))))
;=> #'user/dsl-code

Next, you’ll bring in your little DSL engine:

(use 'clj-in-act.chll.engine)

;j=> nil

It’s now easy to load up the segment definitions:

(load-code dsl-code)
;=> {:segments {:loyal-safari #<engine$eval3399$segment fn 2833
TRUNCATED OUTPUT

Domain-specific languages 297

To test classification, you’re going to need a user session and Redis running. You can
set up a session for testing purposes by defining one at the REPL as follows:

(def abc-session {
:consumer-id "abc"
:url-referrer "http://www.google.com/search?g=clojure+programmers"
:search-terms ["clojure" "programmers"]
:ip-address "192.168.0.10"
:tz-offset 480
:user-agent :safari})
;=> #'user/abc-session

Now put it into Redis:

(require 'redis) (use 'clj-in-act.chll.session)

1=> nil

(redis/with-server {:host "localhost"}
(save-session abc-session))

’.=> IIOKII

Everything is set up now, and you can test segmentation:

(redis/with-server {:host "localhost"}
(in-session "abc"

(println "The current user is in:" (classify))))
The current user is in: (:googling-clojurians)
1=> nil

It works as expected. Note that the classify function returns a lazy sequence that’s
realized by the call to println. If you were to omit that, you’d need a doall to see it at
the REPL; otherwise, it will complain about the *session* var not being bound.

With this, you have the basics working end to end. Expanding the DSL is as easy as
adding new data elements and new primitives such as the matches? function. You can
also expand the $attribute syntax by doing more in the postwalk transformation.
Before addressing updating rules, you’ll add a way to name the abstractions you’re
defining and allow for segments to be reused.

INCREASING COMBINABILITY

Imagine that you’d like to narrow the scope of the googling-clojurians crowd.
You’d like to know which of these folks are also using the Chrome browser. You could
create a segment as follows:

(defsegment googling-clojurians-chrome
(and
(> (count $search-terms) 0)
(matches? Surl-referrer "google")
(= :chrome Suser-agent)))

This will work fine, but it has the obvious problem that two of the three conditions are
duplicated in the googling-clojurians segment. In a normal programming language,

298

CHAPTER 11 More macros and DSLs

creating a named entity and replacing the duplicate code in both places with that
entity can remove such duplication. For example, you could create a Clojure function
and call it from both places.

If you do that, you’ll expose the lower-level details of the implementation of your
DSL to the eventual users of the DSL. It would be ideal if you could hide that detail
while letting them use named entities. Consider this revised implementation of
def-segment:

(defmacro defsegment [segment-name & body]
(let [transformed (postwalk transform-lookups body)]
“(let [segment-fn# (fn [] ~@transformed)]
(register-segment ~(keyword segment-name) segment-fn#)
(def ~segment-name segment-fn#))))

The change made here does what you talked about doing by hand. The definition of a
segment now also creates a var by the same name. It can be used as follows:

(defsegment googling-clojurians-chrome
(and
(googling-clojurians)
(= :chrome Suser-agent)))

This is equivalent in functionality to the previous definition of this segment, with the
duplication removed. This is an example of increasing the combinability of domain-
specific entities, where segment definitions are built on top of the lower-level session-
lookup primitives, combined with built-in logical operators. Note that because your
DSL code is all executed within a single namespace, you have a single namespace going.
This could cause problems with name conflicts, and this may need to be addressed,
depending on the requirements.

Another example of a language-level construct is in-session, which given a cus-
tomer ID sets up the execution context for classification. It abstracts away the details
of where the session is stored and how to access and load it.

Although this is a small example, we’ve explored several of the concepts we talked
about in the opening discussion. The last step will be to look at how the DSL can be
updated dynamically.

DYNAMIC UPDATES

With the DSL, you’ve exposed a linguistic layer to the code that follows. You also would
like to add dynamic updates to the rules. You've already seen that, but we didn’t focus
on it. Consider again a definition such as this:

(defsegment googling-clojurians
(and
(> (count $search-terms) 0)
(matches? Surl-referrer "yahoo")))

11.6

Summary 299

You know that evaluating this code will change the definition of the segment known as
googling-clojurians (not to mention that it’s named incorrectly, because Yahoo!
search is being used). But the following code has the same effect:
(load-code (str ' (defsegment googling-clojurians

(and

(> (count S$search-terms) O0)
(matches? Surl-referrer "yahoo")))))

Notice that load-code accepts a string. This DSL code snippet can be created any-
where, even from outside your execution engine. It could be created, say, from a text
editor and loaded in via a web service.

Let’s take another example by imagining you had a set of remote worker processes
that implemented your rule engine to classify users into segments. You can imagine
classify being implemented using def -worker. When sent a request, it will access a
commonly available Redis server, find the specified user session, and classify the user
into segments. This is no different from what you’ve seen earlier, except for the fact
that this code would run on multiple remote servers.

Now, imagine load-code also being implemented as a def-worker. In this sce-
nario, not only could you remotely load DSL code, but you could also use run-worker-
everywhere to broadcast DSL updates across all remote workers. You’d get the ability
to update the segmentation cluster in real time, with no code to deploy.

We’ll end this section with one last point. We haven’t addressed error checking the
DSL code so far, and in a production system you’d definitely need to do that. You’ve
also built quite a minimal DSL, and you could certainly make it arbitrarily powerful.
Being able to use the full Clojure language inside it is a powerful feature that can be
used by power users if so desired. As the capability of the DSL itself is expanded to do
more than segmentation, the ability to update running code in such a simple way as
described previously could prove to be useful.

Summary

When most people start out with the Lisp family of programming languages, they first
ask about the odd syntax. The answer to that question is the macro system. In that
sense, we’ve come full circle. Macros are special because they make Clojure a pro-
grammable programming language. They allow the programmer to mold the core
language into one that suits the problem at hand. In this way, Clojure blurs the line
between the designers of the language itself and the programmer.

This chapter started with a few advanced uses of Clojure macros. Anaphoric mac-
ros aren’t used a lot, and they certainly come with their gotchas, but when applied
carefully, they can result in truly elegant solutions. Similarly, moving computation into
the compile phase of your program seems like something that isn’t done often. Cer-
tainly, the example we looked at gives only a glimpse into what’s possible. It’s an
important technique, though, that can be effective when needed. Finally, macros that

300

CHAPTER 11 More macros and DSLs

define other macros threaten to send you down the rabbit hole. Understanding such
use of the macro system is the only way to true Lisp mastery.

Lisp encourages a certain style of programming. Everyone seems to be talking
about domain-specific languages these days, but in Clojure, it’s the normal way to
build programs. You’ve written code similar to the behavioral targeting DSL example
throughout the book, be it the mocking framework to help you write tests in chapter 10,
the object system utility in chapter 8, or the faux protocols library called modus ope-
randi in chapter 9. Some people express concern about the misuse of macros, but the
real concern should be an incomplete understanding of the Lisp way.

Conclusion

What you've seen in this book is only the tip of the iceberg. Lisp, and thus Clojure,
makes it possible to build systems that can withstand today’s demanding require-
ments. It isn’t far-fetched to think that the revival of Lisp will prompt systems that
can someday do what you mean. To do that, you’ll need more than a few language
features or a macro system. You’ll need more than DSLs.

You’ll need a system that can adapt itself to new and changing requirements.
Programmers will need to recognize that evaluators are themselves programs, and
they can be built like everything else, allowing new kinds of evaluation rules and
paradigms. You’ll need programs that watch themselves as they run and modify
themselves to improve their output. All this might seem like fantasy, but it’s possi-
ble. In the words of Alan Kay, the computer revolution hasn’t even started yet.! And
paraphrasing him some more, the way to build systems that can do all this is to play
it grand. You have to build your systems grander than you think they can be. A lan-
guage like Clojure gives you the tools to make this happen.

' The Computer Revolution Hasn’t Happened Yet, 1997 OOPSLA Keynote: https://youtu.be/0KglhTOQXoY.

301

https://youtu.be/oKg1hTOQXoY

Al

appendix
Installing Clojure

You have a few options for installing a Clojure compiler and read-evaluate-print
loop (REPL) to run Clojure code. (A REPL is a programming language’s interactive
command line, like a command prompt or terminal shell.) We’ll survey some options
in this appendix, and you can find more options at Clojure’s Getting Started page
(http://clojure.org/). But most people will want to install Clojure via the project
management tool Leiningen (see section A.3).

In almost every case you’ll first need to install Java 1.6 or greater. To check if you
have Java installed, open a command prompt and type the following:

$ java -version

java version "1.8.0_20"

Java (TM) SE Runtime Environment (build 1.8.0_20-b26)

Java HotSpot (TM) 64-Bit Server VM (build 25.20-b23, mixed mode)

If you get an error, or if the first line shows a Java version lower than 1.6, you’ll need
to follow the instructions to install Java for your platform (https://www.java.com/
en/download/help/download_options.xml). Once you have Java installed, you can
follow the instructions shown here to install Clojure.

Try Clojure
The easiest way to install something is not to install it. Try Clojure (http://www.tryclj
.com) is a Clojure REPL you run in your browser. This REPL has two major limitations:
= It runs an older version of Clojure (1.4 as of this writing).
= If you define too many things or wait 15 minutes, your environment is reset.

(It’s kept if you close your browser window, so you can reopen it without los-
ing your defined vars and functions.)

302

http://clojure.org/
https://www.java.com/en/download/help/download_options.xml
http://www.tryclj.com
http://www.tryclj.com
https://www.java.com/en/download/help/download_options.xml

A2

A3

Leiningen 303

But if you just want to try some Clojure code, this isn’t a bad option. You can follow
along with most of the examples in chapters 2 and 3 using nothing more than the Try
Clojure REPL.

Clojure.jar

Clojure is really just some Java code, and Java code is distributed in JAR files. You can
download prebuilt Clojure JAR files from http://clojure.org/downloads. Unzip the
downloaded file and run the clojure.main entry point to get a REPL:

$ java -cp clojure-1.6.0.jar clojure.main
Clojure 1.6.0
user=>

The clojure.main entry point has some other command-line options, too:

$ java -cp clojure-1.6.0.jar clojure.main --help
Usage: java -cp clojure.jar clojure.main [init-opt*] [main-opt] [arg*]

With no options or args, runs an interactive Read-Eval-Print Loop

init options:
-i, --init path Load a file or resource
-e, --eval string Evaluate expressions in string; print non-nil values

main options:

-m, --main ns-name Call the -main function from a namespace with args
-r, --repl Run a repl
path Run a script from from a file or resource
- Run a script from standard input
-h, -?, --help Print this help message and exit
operation:

- Establishes thread-local bindings for commonly set!-able vars

- Enters the user namespace

- Binds *command-line-args* to a seq of strings containing command line
args that appear after any main option

- Runs all init options in order

- Calls a -main function or runs a repl or script if requested

The init options may be repeated and mixed freely, but must appear before
any main option. The appearance of any eval option before running a repl
suppresses the usual repl greeting message: "Clojure ~(clojure-version)".

Paths may be absolute or relative in the filesystem or relative to
classpath. Classpath-relative paths have prefix of @ or @/

Leiningen

Leiningen is the standard Clojure project and dependency management tool—almost
all Clojure projects are managed using Leiningen. For most people, almost all of their
contact with Clojure is actually through Leiningen. If you’re not sure what Clojure
installation option you need, then it’s this one!

http://clojure.org/downloads

304

A3.1

APPENDIX Installing Clojure

If you’re familiar with the Java world, you’re sure to have come across Maven. This
is an open source tool that can simplify dependency management and builds of any
Java-based project. Although Maven has become ubiquitous in the Java world, it’s
known for being somewhat difficult to use, especially when it comes to larger, com-
plex projects.

Luckily, despite Clojure being a Java project itself, you don’t have to use Maven
directly. Phil Hagelberg (http://technomancy.us) has created the Leiningen proj-
ect, which uses the best parts of Maven while providing a very clean Clojure inter-
face to end users. In this section, you’ll install Leiningen and use it to set up your
Clojure project.

Getting Leiningen to work on your computer is trivial. Just follow the instructions
on the project’s GitHub page: https://github.com/technomancy/leiningen. Once
you've finished, you should be able to run the lein (short for Leiningen) command
from your shell. To get into a Clojure REPL from anywhere, run lein repl.

But Leiningen’s true power is managing projects: Clojure programs and libraries
with multiple dependencies, entry points, tests, deployment processes, and the like.
Read on to learn the basics of Leiningen project creation and management.

lein tasks

Running lein will show you a list of available tasks. The simplest one that lets you get
started is lein new. Running this task creates a skeleton project.c]j file, which is the
basic configuration file that drives Leiningen, along with a directory structure for a
new Clojure project. Here’s the set of directories and files created by running lein
new trial, where trial is the name of the project we’re creating:

® project.clj

= README.md
= doc/

= src/

= test/

You may have slightly different content in this directory, depending on your exact
version of Leiningen. The following shows the contents of the project.clj file we just
generated:

(defproject trial "0.1.0-SNAPSHOT"
:description "FIXME: write description”
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.6.0"1])

The file contains a single call to defproject, which is part of the 1lein DSL. As you can
see, the name of the projectis trial, and the version number has been set to 0.1.0-
SNAPSHOT. If you’re familiar with Maven, you’ll know what setting the version of a

http://technomancy.us
https://github.com/technomancy/leiningen

A3.2

A3.3

Leiningen 305

project to SNAPSHOT means (it just means that this version hasn’t yet been released and
is perhaps not official). Apart from the name of the project and the version, defproj-
ect accepts a number of keyword parameters. The ones shown previously are mostly
self-explanatory, but one of interest is : dependencies. This specifies the various librar-
ies (JAR files) that the project depends on and that will be pulled in from a Maven repos-
itory (by default, lein looks at the Maven repository hosted at http://clojars.org).
Incidentally, you may have a different version of Clojure as your dependency, depend-
ing on the latest stable release of Clojure.

lein repl

The next step is to run another lein task called repl. This causes lein to first run a task
called deps, which connects to the default Maven repository (and any others that you
may specify via the :repositories parameter in your project.clj), and get the depen-
dency JAR files. These will be stored in your home folder, under the .m2 directory.

Once the dependencies have been downloaded, you’ll be dropped to a Clojure
prompt that’s the REPL, with the classpath set up to include all the specified depen-
dencies. This makes it really easy to manage your project’s dependencies and their
specific versions. The following shows how it looks once the task runs (again, your
output may be slightly different). Remember to change directory so you’re in the
project folder:

$ lein repl
nREPL server started on port 58315 on host 127.0.0.1 - nrepl://
127.0.0.1:58315
REPL-y 0.3.5, nREPL 0.2.6
Clojure 1.6.0
Java HotSpot (TM) 64-Bit Server VM 1.8.0_20-b26
Docs: (doc function-name-here)
(find-doc "part-of-name-here")
Source: (source function-name-here)
Javadoc: (javadoc java-object-or-class-here)
Exit: Control+D or (exit) or (quit)
Results: Stored in vars *1, *2, *3, an exception in *e

user=>

At this point, you're up and running at an active Clojure prompt. Next, let’s take a
look at how to add other dependencies to your Clojure project.

Adding dependencies to a Leiningen project

Larger Clojure programs often need other libraries on which to build functionality.
Traditionally, managing such libraries has been a chore, but over the past couple of
years, Leiningen has become the default dependency management tool for Clojure
projects. As mentioned earlier, it uses Maven repositories as sources for the various
libraries (JAR files in the Clojure world). There’s a community repository hosted at
https:// clojars.org, which is the default repository for Leiningen. You can search this

http://clojars.org/
https://clojars.org

306

APPENDIX Installing Clojure

repository, and you’ll often find what you’re looking for if someone has uploaded that
library. Of course, you can also upload your own JAR files if you don’t find what you’re
looking for. Further, you can also tell Leiningen to look at other repositories and
indeed host your own Maven repository if you’d like.

Here’s an example of how you might conveniently add the JSON handling library
called Cheshire to your program. You go to https://clojars.org and search for Cheshire,
and you’ll notice several options. One of them has version 5.4, which is a recent ver-
sion and one that you’ll probably be comfortable with. When you go to the web page
for that library, you’ll see the Leiningen dependency vector you need to add this to
your project. In this case it is

[cheshire "5.4.0"]

You copy and paste that into the :dependencies section of your project.clj, save the
file, and then run lein deps. Leiningen will download the correct JAR file, and you’ll
have it available to use when you start your REPL the next time.

https://clojars.org

Symbols

* (backquote) 38,172, 283

A (meta character) 38

A} (reader macro) 57

A:dynamic 157

, (comma) 23

; (semicolon) 23, 38

. (dot) operator 12-13

.. (dot-dot) macro 121-122

' (quote) 38

() parentheses 9-10, 124

@ (deref character) 38

@ (unquote splice reader
macro) 174

compile-path global var 129

\ (backslash) 38

& (ampersand) 35, 92

(dispatch character) 38

#() reader macro 76, 170

== (double-equals) function 43

- (dash) 131

-> (thread-first macro) 51, 273

->> (thread-last macro) 51, 64,
273

~ (unquote character) 38, 172

~@ (unquote splice reader
macro) 174

A

Abstract Windowing Toolkit. See
AWT

ACI (atomic, consistent, iso-
lated) properties 149

action at a distance 81

actions, defined 150
ad hoc polymorphism
overview 99-101
using multimethods
defmethod macro
105-106
defmulti macro
104-105
overview 103-104
add-watch function 160
agent-error function 154
agents
await function 153
creating 150-151, 159
defined 144
dereferencing 159
errors from 153-154
mutating
send function 151
send-off function 152
overview 150
side effects and 161
validations 154
aget function 125
alength function 125
all-ns function 90
alter function 146-148, 159
ampersand (&) 92
anaphoric macros
if macro 270-273
overview 270
thread-it macro 273-276
and macro 178-179
anonymous functions 76-77
AOT (ahead of time) 126
apropos function 21

307

mdex

ArithmeticException 26, 61
arity of functions 65
arrays, Java, functions for
124-125
:as keyword 92
as-> (thread-as macro) 52
aset function 125
AssertionError 65
assertions 248-255
assert-true macro 184
assoc function 31-32
assoc-in function 33
atomic, consistent, isolated
(ACI) properties 149
atoms
creating 155-156, 159
defined 144
dereferencing 159
mutating
compare-and-set!
function 157
reset! function 156
swap! function 156
varsvs. 161
auto-gensym function 175
await-for function 153
AWT (Abstract Windowing
Toolkit) 125

backquote (~) 38,172, 283
bean function 124

binding, of vars 80-81, 158-159
bottom-up decomposition 287
Bouncy Castle 12

308

Cc

case sensitivity 24
catch blocks 60
characters 24
CIL (Common Intermediate
Language) 7
classes, Java 11-12,117-118
classes. See object system for
Clojure
clear-agent-errors function 154
Clojure
functional programming 3-6
installation 303
interop
dot and new operators
12-13
Java types, classes, and
objects 11-12
threads and
concurrency 13
Lisp and 2-3
on JVM 6-7, 10-11
overview 1-2
parentheses 9-10
significance of name 86
syntax 7-9, 21-24
Try Clojure site 302
clojure.test library 220
closed dispatch 100
closures
data vs. function 201-202
defined 86
delayed computation
and 198-199
free variables and 197-198
object system for Clojure
class inheritance 209-214
creating instances 203-204
defining classes 202-203
defining methods 205-207
invoking methods 207-208
objects and state 204-205
pros and cons of 214-215
referring to this 208-209
private data and 199-201
CLR (Common Language
Runtime) 2
combinability of DSLs 287-288
comment macro 23, 177
comments 23-24
Common Intermediate Lan-
guage. See CIL
Common Lisp 2
commute function 147-148, 159

INDEX

comp function 72
compare-and-set! function 157
comparison functions 42
compile function 127
compile time, shifting computa-
tion to 276-281
complement function 71
compute-across function 191
concurrency
agents
await function 153
creating 150-151
errors from 153-154
overview 150
send function 151
send-off function 152
validations 154
atoms
compare-and-set!
function 157
creating 155-156
reset! function 156
swap! function 156
Clojure approach to
creation functions 159
deciding which reference
type to use 161
immutability by
copying 143-144
managed references
144-145
mutation 159-160
mutation, watching
for 160-161
overview 143
persistent data
structures 144
references 159
transactions 160
futures 162-163
identities and values
immutable values 140, 142
objects over time 140-141
understanding identity vs.
state 139-140
in Java 13
promises 163
refs
alter function 146-147

commute function 147-148

creating 145

refset function 146
state issues

dirty reads 136

locking solution 137-138

lost updates 136
overview 136
phantom reads 137
STM
ACI (atomic, consistent, iso-
lated) properties 149
MVCC (multiversion con-
currency control) 150
overview 148-149
side effects from 155
transactions 149
vars
bindings for 158-159
creating 157-158
cond macro 40
cond-> (conditional threading
macro) b3
conditionals
cond 40
if 39-40
if-not 40
when 40-41
when-not 41
conj function 28
cons function 34
constantly function 71
:constructors option 131
create-ns function 90
cube-all function 188

D

dash prefix 131

data structures
characters 24
keywords 26-27

lists 27-29
maps 31-33
nil 24

numbers 25-26

sequences 33-34

strings 24

symbols 26-27

vectors 29-30
deadlock 138
decimal numbers 25
declare macro 177-178
decomposition of DSLs 287
def form 80
:default case 111
defclass function 202
defmethod macro 105-106
defmulti macro 104-105
defn macro 35, 63, 81
defnn macro 183

defonce macro 105, 178
defprotocol macro 235
defrecord macro 240-243
deftest macro 220
deftype macro 244
defwebmethod macro 181-183
delayed computation, closures
and 198-199
deliver function 164
dependencies, Leiningen
305-306
deref function 145, 159
derive form 109-110
destructuring
map bindings 93-95
overview 91
vector bindings
nested vectors 92-93
overview 91-92
using & and 92
dirty reads 136
dispatch character (#) 38
dissoc function 31
do form 37-38
:doc key 58, 63
doc macro 20-21, 63
doc-string macro 63
documentation
apropos function 21
doc macro 20-21
find-doc function 21
domain-specific languages. See
DSLs
doseq macro 46
dosync blocks, STM transaction
side effects 155
dosync function 147
dosync macro 160
dot operator 12-13
dot special form 120-121
dot-dot (..) macro 121-122
dotimes macro 46
doto macro 122
double-equals (==) function 43
DSLs (domain-specific
languages) 177
designing
combinability 287-288
decomposition 287
internal vs. external 291
user classification through
data element 289
dynamic updates 298
factors affecting power of
DSL 294-295

INDEX

increasing combinability
297-298
overview 289, 295-297
segmenting users 291-294
user session
persistence 290-291
duck typing 101
dynamic scope, of vars 81-83

E

equality functions 42
every? function 70
exceptions
from agents 153
in Java 60-62
expectations library 248
:exposes option 132
:exposesmethods option 132
expression problem
data types side of
defrecord macro 240-243
deftype macro 244
reify macro 244
specifying Java
interfaces 243-244
defined 222
example scenario for
adding functions 219
creating base 218
existing Java codebase
220-222
testing code 219-220
inadequate solutions
if-then-else 223
monkey patching 223
wrappers 222-223
multimethods as
solution 223-225
operations side of
overview 225-227
tracking using
metadata 227-233
overview 218
protocols
defining 235-236
extend function 237
extends? function 238-239
extend-type macro 237
nil and 238
overview 234-235
using 236-237
extend function 237
extend-protocol macro 236
:extends option 131

309

extends? function 238-239
extend-type macro 237
external DSLs 291

extreme programming. See EP

F

:factory option 132
FileFilter interface 126
filter macro 47
finally clause 61
find-doc function 21
find-ns function 90
“first-class” functions 3
fixed arities 66
floating-point numbers 25
flow control
conditionals
cond 40
if 39-40
if-not 40
when 40-41
when-not 41
iteration
doseq and dotimes 46
filter 47
for 48-50
loop/recur 44-45
map function 46-47
reduce 47-48
while 44
logical functions 41-43
threading macros
conditional threading 53
thread-as 52-53
thread-first 50-51
thread-last 51-52
for macro 48-50
Fortran 2
free variables, closures and
197-198
function composition 70
functional programming
(FP) 3-6
closures
data vs. function 201-202
delayed computation
and 198-199
free variables and 197-198
private data and 199-201
higher-order functions
collecting results of
functions 187-189
filtering lists of things
191-192

functional programming (FP)

(continued)
overview 187
reducing lists of

things 189-191
object system for Clojure
class inheritance 209-214
creating instances 203-204
defining classes 202-203
defining methods 205-207
invoking methods 207-208
objects and state 204-205
pros and cons of 214-215
referring to this 208-209
partial application of func-
tions
adapting functions

193-196
defining new

functions 196-197
overview 192-193

functions
anonymous 76-77
calling 69-70
creating 35
defining 62-65
general discussion 62
higher-order
comp 72
complement 71
constantly 71
creating 73-75
every? 70
memoize 73
overview 70
partial 72
some 70
higher-order functions
collecting results of
functions 187-189
filtering lists of things
191-192
overview 187
reducing lists of

things 189-191
keywords 77-80
logical 41-43
multiple arity 65

mutually recursive 67-69
overloading 100
partial application of

adapting functions 193-196
defining new

functions 196-197
overview 192-193

INDEX

private vs. public 88
recursive 66-67
symbols 78-80
unary 46
variable arity of 35
variadic 66

futures 162-163

G

:gen-class directive 127
gen-class macro 129-131
generics 99

gen-interface macro 129-131
-getCurrentStatus function 131

H

hash maps 79

:hierarchy keyword option 113

higher-order functions

collecting results of
functions 187-189

comp 72

complement 71

constantly 71

creating 73-75

every? 70

filtering lists of things 191-
192

memoize 73

overview 70, 187

partial 72

reducing lists of things 189-
191

some 70

hosted languages 6

identities

immutable values 140, 142
objects over time 140-141
state vs. 139-140
if macro 39-40, 270-273
if-not macro 40
if-then-else 223
immutable values
identities and 140, 142
via copying 143-144
:implements option 131
:impl-ns option 132
:import key 89
import macro 118
:import option 118

infix macro 180

infix notation 8

:init option 131
—initialize function 131
in-ns function 90
installation

checking Java installation 302

Clojure jar 303
Leiningen
adding dependencies to
project 305-306
lein repl task 305
lein tasks 304-305
overview 303-304
Try Clojure site 302-303
instance? function 110
integers 25
interfaces, defined 11
internal DSLs 291
interop
calling Clojure from

Java 133-134

calling Java from Clojure

.. (dot-dot) macro 121-122

accessing methods and
fields 119-120

array functions 124-125

bean function 124

creating instances 118-119

dot special form 120-121

doto macro 122

importing Java classes
117-118

memifn macro 123-124

MouseAdapter class
125-126

reify macro 126

compiling Clojure code to

Java bytecode

calculator example 126-129

creating Java classes and
interfaces using gen-class
and gen-interface
129-131

example generating Java
classes 131-132
using Leiningen 132-133

dot and new operators 12-13

Java types, classes, and
objects 11-12
threads and concurrency 13
into-array function 125
in-transaction values 149
invoke method 134
:io key 56

isa? function 110
ISeq interface 33
iteration
doseq and dotimes 46
filter 47
for 48-50
loop/recur 44-45
map function 46-47
reduce 47-48
while 44

J

JAR files 221
Java
calling Clojure from 133-134
calling from Clojure
.. (dot-dot) macro 121-122
accessing methods and
fields 119-120
array functions 124-125
bean function 124
creating instances 118-119
dot special form 120-121
doto macro 122
importing Java classes
117-118
memfn macro 123-124
MouseAdapter class
125-126
reify macro 126
checking installation 302
compiling Clojure code to
bytecode
calculator example 126-129
creating Java classes and
interfaces using gen-class
and gen-interface
129-131
example generating Java
classes 131-132
using Leiningen 132-133
dot and new operators 12-13
exceptions in 60-62
primitive types 59-60
static fields 119-120
static methods 119
threads and concurrency 13
type hints 58-59
types, classes, and objects
11-12
java.lang package 11
JavaScript 2
Jetty 12
JIT (justin-time) compiler 6

INDEX

Joda Time library 12, 249
JSP (JavaServer Pages) 172
just-in-time compiler. See JIT
JVM (Java Virtual Machine)
Clojure on 6-7, 10-11
dot and new operators 12-13
Java types, classes, and
objects 11-12
threads and concurrency 13

K

:keys key 94
keywords 26-27, 77-80

L

lazy-seq macro 189
Leiningen 127, 132-133

adding dependencies to

project 305-306

lein repl task 305

lein tasks 304-305

overview 303-304
lein-localrepo plugin 221
let form

overview 35-36

scope and 85-86
lexical closures 86-87
lexically scoped variable 80
Lisp 301

Clojure and 2-3

syntax 7-9
lists 27-29
livelock 138
:load-impl-ns option 132
loadResourceScript method 134
locks 137-138
logical functions 41-43
loop macro 44-45
loop/recur construct 67

:macro key 58
macroexpand function 171
macroexpand-1 function 171
macroexpand-all function 171
macros
advantages of 176-177
anaphoric
if macro 270-273
overview 270
thread-it macro 273-276
and macro 178-179

311

comment macro 177
declare macro 177-178
defonce macro 178
examples of custom
assert-true macro 184
defnn macro 183
defwebmethod macro
181-183
infix macro 180
randomly macro 180-181
macro-generating macros
defined 281-282
example template 282
make-synonym macro
implementation
282-285
purpose of 285-286
overview 167
rotation cipher example
276-279
shifting computation to
compile time 276-281
templates
generating names
174-176
splicing 173-174
unquote splice reader
macro (~@) 174
unquoting 172-173
using backquote (7)
macro 172
textual substitution
example 167-168
time macro 179-180
unless form
as function 169-170
as macro 170-171
overview 168-169
magic variables 19-20
‘main option 132
make-hierarchy function 113
make-synonym macro 282-285
managed references 144-145,
161
map bindings 93-95
maps 31-33, 46-47
mathematical functions 22
Maven repository 305
memfn macro 123-124
memoize function 73
:meta option 154
metadata
Java primitive types 59-60
Java type hints 58-59
overview 56-58

312

:methods option 131
Midje library 248
mocks
defined 256
implementing 260-261
state management 264-265
stubs vs. 261-264
monkey patching 223
MouseAdapter class 125-126
multimethods
ad hoc polymorphism using
defmethod macro
105-106
defmulti macro 104-105
overview 103-104
as solution to expression
problem 223-225
creating functionality
without 103
multiple-dispatch 106-108
subtype polymorphism using
building and querying type
hierarchies 109-110
overview 108-109
resolving method
ambiguities 111-112
subtypes and multiple-
dispatch 110-111
user-defined
hierarchies 112
multiple-dispatch
overview 106-108
subtypes and 110-111
multithreading. See concurrency
mutation
of agents
send function 151
send-off function 152
of atoms
compare-and-set!
function 157
reset! function 156
swap! function 156
of refs
alter function 146-147
commute function 147-148
ref-set function 146
overview 159-160
watching for
add-watch function 160
remove-watch function 161
mutually recursive
functions 67-69
MVCC (multiversion concur-
rency control) 150

INDEX

N

P

:name option 131
namespaces
all-ns function 90
create-ns function 90
find-ns function 90
importing Java classes
into 118
in-ns function 90
ns macro 87-88
ns-interns function 90
ns-publics function 90
ns-resolve function 90
ns-unmap function 90-91
overview 87
reload and reload-all 89-90
remove-ns function 90-91
resolve function 90
using external libraries
88-89
nested vectors 92-93
new operator 12-13
nil
as return 187
overview 24
protocols and 238
ns macro 87-88
ns-interns function 90
ns-publics function 90
ns-resolve function 90
ns-unmap function 90-91
NullPointerException 24
numbers 25-26

o

object system for Clojure
class inheritance 209-214
creating instances
203-204
defining classes 202-203
defining methods 205-207
invoking methods 207-208
objects and state 204-205
pros and cons of 214-215
referring to this 208-209
objects, changes over time
to 140-141
objects, Java 11-12
OO (object-oriented) 2
open dispatch 100
operators, absence of 8
ordering-fn function 75
overloading functions 100

packages, defined 117
parametric polymorphism 99
parentheses () 9-10, 124
partial application of functions
adapting functions 193-196
defining new functions
196-197
overview 192-193
partial function 72, 195
pattern matching. See destructur-
ing
peek function 30
persistence
defined 144
persistent data structures 144
principles of persistent data 4
phantom reads 137
polish notation 21
polymorphism
ad hoc 99-101
function overloading as 100
general discussion 98-99
multimethods
ad hoc polymorphism
using 103-104
building and querying type
hierarchies 109-110
creating functionality
without 103
defmethod macro 105-106
defmulti macro 104-105
multiple-dispatch 106-108
resolving method
ambiguities 111-112
subtype polymorphism
using 108-109
subtypes and multiple-
dispatch 110-111
user-defined
hierarchies 112
parametric 99
subtype 101-103
pop function 30
:post key 65
:postinit option 132
:pre key 64
predicate functions 70
prefer-method function 112
prefix notation 8, 21-22
:prefix option 131-132
primitive types, Java 59-60
private functions 88
profilers 12

promises 163

protocols
defining 235-236
extend function 237
extends? function 238-239
extend-type macro 237
nil and 238
overview 234-235
using 236-237

public functions 88

pure functions 3, 6, 19

INDEX

:repositories parameter 305
require 89

reset! function 156

resolve function 90
RHTML (Rails HTML) 172
root binding 80

ROT13 cipher 276

rotation cipher example 276-279
-run function 131

run-tests function 220
RuntimeException 61

Q S
quote (') 38 :safe key 56
scope
R let form and 85-86

race conditions 138
Rails HTML. See RHTML
randomly macro 180-181
reader literals 95
reader macros 38-39, 57
read-evaluate-print loop. See REPL
recur construct 67
recur macro 44-45
recursive functions 66-67
Redis 290
reduce macro 47-48
refactor mercilessly 255-256
referentially transparent,
defined 3
refs
creating 145, 159
defined 144
dereferencing 159
mutating
alter function 146-147
commute function 147-148
refset function 146
ref-set function 146
regex (regular expression) 21
reify macro 126, 244
reload/reload-all 89-90
remove-ns function 90-91
remove-watch function 161
REPL (read-evaluate-print
loop) 19
documentation in
apropos function 21
doc macro 20-21
find-doc function 21
for Clojure 17-18
general discussion 16-17
magic variables in 19-20

overview 80
vars
binding of 80-81
dynamic scope 81-83
laziness and 84-85
thread-local state 84
Selenium WebDriver 12
semicolon (;) 23
send function 151
send-off function 152
sequences 33-34
side-effects 37, 155
software transactional memory.
See STM
some function 70
sort-by function 74
sorter-using function 74, 76
splicing 173-174
StackOverflowError 67
starvation 138
state issues
dirty reads 136
locking solution 137-138
lost updates 136
overview 136
phantom reads 137
See also concurrency
static fields, Java 119-120
static methods, Java 119
STM (software transactional
memory) 5
ACI properties 149
MVCC 150
overview 148-149
side effects from 155
transactions 149
strings 24
:strs key 95

313

structural editing 10
structural sharing 4
structural subtyping 101
stubs
defined 256
expense finders
example 256-257
implementing 257-260
mocks vs. 261-264
state management 264-265
subtype polymorphism
overview 101
using multimethods
building and querying type
hierarchies 109-110
overview 108-109
resolving method
ambiguities 111-112
subtypes and multiple-
dispatch 110-111
user-defined
hierarchies 112
swap! function 156-157, 161
symbols 26-27, 78-80
:syms key 95
syntax
case sensitivity 24
comments 23-24
do form 37-38
functions
creating 35
variable arity of 35
let form 35-36
overview 7-9
parentheses 9-10
prefix notation 21-22
reader macros 38-39
underscore identifier 36-37
whitespace 22-23

T

:tag key 58
TDD (test-driven development)
creating assertions 248-255
general discussion 247-248
mocks
defined 256
implementing 260-261
state management 264-265
stubs vs. 261-264
organizing tests
are macro 266
overview 265-266
testing macro 266

314

TDD (test-driven development)
(continued)
refactor mercilessly 255-256
stubs
defined 256
expense finders example
256-257
implementing 257-260
mocks vs. 261-264

state management 264-265

templates, macro
generating names 174-176
splicing 173-174
unquote splice reader macro
(~@) 174
unquoting 172-173

using backquote (‘) macro 172

this keyword 208

thread-as macro 52-53

threading macros
conditional threading 53
thread-as 52-53
thread-first 50-51, 273
thread-it 273-276
thread-last 51-52, 64

thread-local state, of vars 84

threads, in Java 13

throw form 60-62

time macro 179-180

to-array function 125

to-array-2d function 125

top-down decomposition 287

trampoline function 68

transactions, STM 149

Try Clojure site 302-303

try form 60-62

INDEX

type hints, Java 58-59

types
Clojure 11

Java 11-12

u

unary functions 46
unboxed types 59
underive form 109
underscore identifier 36-37
unit testing 219
unless form
as function 169-170
as macro 170-171
overview 168-169
unquote character (~) 172
unquote splice reader macro
(@) 174
unquoting 172-173
update-in function 33
:use key 89
user classification using DSL
data element 289
dynamic updates 298
factors affecting power of
DSL 294-295
increasing combinability
297-298
overview 289, 295-297
segmenting users 291-294
user session persistence
290-291
user namespace 17
UUIDs (universally unique
identifiers) 96

'

:validator option 154
values, in functional
programming 3
variable arity 8
variable capture 175,
272
variadic functions 21, 66
vars
atoms vs. 161
binding of 80-81
bindings for 158-159
creating 157-158
defined 144
dynamic scope 81-83
laziness and 84-85
thread-local state 84
vector bindings
nested vectors 92-93
overview 91-92
using & and 92
vectors 29-30

w

when macro 40-41
when-not macro 41
while macro 44
whitespace 22-23
wrappers 222-223

X

XP (extreme
programming) 255

PROGRAMMING

(Clojure 1 AcTioN Second Edition

Rathore Avila

you expect: first-class functions, macros, and Lisp’s clean

programming style. It supports functional programming,
making it ideal for concurrent programming and for creating
domain-specific languages. Clojure lets you solve harder prob-
lems, make faster changes, and end up with a smaller code base.
It's no wonder that there are so many Clojure success stories.

(lojure is a modern Lisp for the JVM. It has the strengths

(lojure in Action, Second Edition, is an expanded and improved
version that’s been updated to cover the new features of Clojure
1.6. The book gives you a rapid introduction to the Clojure
language, moving from abstract theory to practical examples.
You'll start by learning how to use Clojure as a general-purpose
language. Next, you'll explore Clojure’s efficient concurrency

model, based on the database concept of Software Transactional —Jeff Smith, Single Source Systems

Memory (STM). You'll gain a new level of productivity through
Clojure DSLs that can run on the JVM. Along the way, you'll
learn countless tips, tricks, and techniques for writing smaller,
safer, and faster code.

What's Inside

e Functional programming basics

* Metaprogramming with Clojure’s macros
* Interoperating with Java

e Covers Clojure 1.6

Assumes readers are familiar with a programming language like
C, Java, Ruby, or Python.

Amit Rathore has 12 years of experience building large-scale,
data-heavy applications for a variety of domains. Francis Avila is
a software developer at Breeze with seven years of experience in
back- and front-end web development.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/ clojure-in-action-second-edition

$49.99 / Can $57.99 [INCLUDING eBOOK]

g

SEE INS

¢CAn excellent book for

programmers of all levels
of experience.”?

—Palak Mathur, Capital One

¢CA down-to-earth
explanation of functional
programming and one
of the best introductory
books on Clojure to date.??

¢CThe right balance of
idiomatic Clojure and how
to use it pragmatically within
the greater Java ecosystem.??

—Scott M. Gardner,
Multimedia LLC

¢CA quick, no-nonsense
way to get up to speed
with Clojure!??
—Jonathan Rioux, RGA Canada

ISBN L3: 978-1L-L1729-152-4
ISBN 1L0: 1-EL729-1.52-8

“ H ““| “‘“ Il

	Front cover
	contents
	preface to the second edition
	preface to the first edition
	acknowledgments
	about this book
	How to use this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the cover illustration

	1 Introducing Clojure
	1.1 Clojure: What and why?
	1.1.1 Clojure: A modern Lisp
	1.1.2 Clojure: Pragmatic functional programming
	1.1.3 Clojure on the JVM

	1.2 Language basics
	1.2.1 Lisp syntax
	1.2.2 Parentheses

	1.3 Host interoperation: A JVM crash course
	1.3.1 Java types, classes, and objects
	1.3.2 The dot and new operators
	1.3.3 Threads and concurrency

	1.4 Summary

	2 Clojure elements: Data structures and functions
	2.1 Coding at the REPL
	2.1.1 Clojure REPL
	2.1.2 “Hello, world!”
	2.1.3 Looking up documentation using doc, find-doc, and apropos
	2.1.4 A few more points on Clojure syntax

	2.2 Clojure data structures
	2.2.1 nil, truth, and falsehood
	2.2.2 Characters and strings
	2.2.3 Clojure numbers
	2.2.4 Symbols and keywords
	2.2.5 Lists
	2.2.6 Vectors
	2.2.7 Maps
	2.2.8 Sequences

	2.3 Program structure
	2.3.1 Functions
	2.3.2 The let form
	2.3.3 Side effects with do
	2.3.4 Reader macros

	2.4 Program flow
	2.4.1 Conditionals
	2.4.2 Logical functions
	2.4.3 Functional iteration
	2.4.4 Threading macros

	2.5 Summary

	3 Building blocks of Clojure
	3.1 Metadata
	3.1.1 Java type hints
	3.1.2 Java primitive and array types

	3.2 Java exceptions: try and throw
	3.3 Functions
	3.3.1 Defining functions
	3.3.2 Calling functions
	3.3.3 Higher-order functions
	3.3.4 Writing higher-order functions
	3.3.5 Anonymous functions
	3.3.6 Keywords and symbols

	3.4 Scope
	3.4.1 Vars and binding
	3.4.2 The let form revisited
	3.4.3 Lexical closures

	3.5 Namespaces
	3.5.1 ns macro
	3.5.2 Working with namespaces

	3.6 Destructuring
	3.6.1 Vector bindings
	3.6.2 Map bindings

	3.7 Reader literals
	3.8 Summary

	4 Multimethod polymorphism
	4.1 Polymorphism and its types
	4.1.1 Parametric polymorphism
	4.1.2 Ad hoc polymorphism
	4.1.3 Subtype polymorphism

	4.2 Polymorphism using multimethods
	4.2.1 Life without multimethods
	4.2.2 Ad hoc polymorphism using multimethods
	4.2.3 Multiple dispatch
	4.2.4 Subtype polymorphism using multimethods

	4.3 Summary

	5 Exploring Clojure and Java interop
	5.1 Calling Java from Clojure
	5.1.1 Importing Java classes into Clojure
	5.1.2 Creating instances
	5.1.3 Accessing methods and fields
	5.1.4 Macros and the dot special form
	5.1.5 Helpful Clojure macros for working with Java
	5.1.6 Implementing interfaces and extending classes

	5.2 Compiling Clojure code to Java bytecode
	5.2.1 Example: A tale of two calculators
	5.2.2 Creating Java classes and interfaces using gen-class and gen-interface

	5.3 Calling Clojure from Java
	5.4 Summary

	6 State and the concurrent world
	6.1 The problem with state
	6.1.1 Common problems with shared state
	6.1.2 Traditional solution

	6.2 Separating identities and values
	6.2.1 Immutable values
	6.2.2 Objects and time
	6.2.3 Immutability and concurrency

	6.3 Clojure’s way
	6.3.1 Immutability and performance
	6.3.2 Managed references

	6.4 Refs
	6.4.1 Creating refs
	6.4.2 Mutating refs
	6.4.3 Software transactional memory

	6.5 Agents
	6.5.1 Creating agents
	6.5.2 Mutating agents
	6.5.3 Working with agents
	6.5.4 Side effects in STM transactions

	6.6 Atoms
	6.6.1 Creating atoms
	6.6.2 Mutating atoms

	6.7 Vars
	6.7.1 Creating vars and root bindings
	6.7.2 Var bindings

	6.8 State and its unified access model
	6.8.1 Creating
	6.8.2 Reading
	6.8.3 Mutation
	6.8.4 Transactions
	6.8.5 Watching for mutation

	6.9 Deciding which reference type to use
	6.10 Futures and promises
	6.10.1 Futures
	6.10.2 Promises

	6.11 Summary

	7 Evolving Clojure through macros
	7.1 Macro basics
	7.1.1 Textual substitution
	7.1.2 The unless example
	7.1.3 Macro templates
	7.1.4 Recap: Why macros?

	7.2 Macros from within Clojure
	7.2.1 comment
	7.2.2 declare
	7.2.3 defonce
	7.2.4 and
	7.2.5 time

	7.3 Writing your own macros
	7.3.1 infix
	7.3.2 randomly
	7.3.3 defwebmethod
	7.3.4 defnn
	7.3.5 assert-true

	7.4 Summary

	8 More on functional programming
	8.1 Using higher-order functions
	8.1.1 Collecting results of functions
	8.1.2 Reducing lists of things
	8.1.3 Filtering lists of things

	8.2 Partial application
	8.2.1 Adapting functions
	8.2.2 Defining functions

	8.3 Closures
	8.3.1 Free variables and closures
	8.3.2 Delayed computation and closures
	8.3.3 Closures and objects
	8.3.4 An object system for Clojure

	8.4 Summary

	9 Protocols, records, and types
	9.1 The expression problem
	9.1.1 Setting up the example scenario
	9.1.2 A closer look at the expression problem and some potential solutions
	9.1.3 Clojure’s multimethods solution

	9.2 Examining the operations side of the expression problem
	9.2.1 def-modus-operandi
	9.2.2 detail-modus-operandi
	9.2.3 Tracking your modus operandi
	9.2.4 Error handling and trouble spots in this solution

	9.3 Examining the data types side of the expression problem with protocols
	9.3.1 defprotocol and extend-protocol
	9.3.2 Defining data types with deftype, defrecord, and reify

	9.4 Summary

	10 Test-driven development and more
	10.1 Getting started with TDD: Manipulating dates in strings
	10.1.1 First assertion
	10.1.2 month-from and year-from
	10.1.3 as-string
	10.1.4 Incrementing and decrementing
	10.1.5 Refactor mercilessly

	10.2 Improving tests through mocking and stubbing
	10.2.1 Example: Expense finders
	10.2.2 Stubbing
	10.2.3 Mocking
	10.2.4 Mocks versus stubs
	10.2.5 Managing stubbing and mocking state

	10.3 Organizing tests
	10.3.1 The testing macro
	10.3.2 The are macro

	10.4 Summary

	11 More macros and DSLs
	11.1 A quick review of macros
	11.2 Anaphoric macros
	11.2.1 The anaphoric if
	11.2.2 The thread-it macro

	11.3 Shifting computation to compile time
	11.3.1 Example: Rotation ciphers without macros
	11.3.2 Making the compiler work harder

	11.4 Macro-generating macros
	11.4.1 Example template
	11.4.2 Implementing make-synonym
	11.4.3 Why macro-generating macros

	11.5 Domain-specific languages
	11.5.1 DSL-driven design
	11.5.2 User classification

	11.6 Summary

	Conclusion
	Appendix—Installing Clojure
	A.1 Try Clojure
	A.2 Clojure.jar
	A.3 Leiningen
	A.3.1 lein tasks
	A.3.2 lein repl
	A.3.3 Adding dependencies to a Leiningen project

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

